Search results
Results from the WOW.Com Content Network
If we scale phase permeability w.r.t. absolute water permeability (i.e. =), we get an endpoint parameter for both oil and water relative permeability. If we scale phase permeability w.r.t. oil permeability with irreducible water saturation present, endpoint is one, and we are left with only the endpoint parameter. In order to satisfy both ...
In fluid dynamics, the Buckley–Leverett equation is a conservation equation used to model two-phase flow in porous media. [1] The Buckley–Leverett equation or the Buckley–Leverett displacement describes an immiscible displacement process, such as the displacement of oil by water, in a one-dimensional or quasi-one-dimensional reservoir.
The physical property that links the flow equations of the three fluid phases, is relative permeability of each fluid phase and pressure. This property of the fluid-rock system (i.e. water-oil-gas-rock system) is mainly a function of the fluid saturations , and it is linked to capillary pressure and the flowing process, implying that it is ...
The phase velocity of a wave is the rate at which the wave propagates in any medium. This is the velocity at which the phase of any one frequency component of the wave travels. For such a component, any given phase of the wave (for example, the crest ) will appear to travel at the phase velocity.
Darcy's law is an equation that describes the flow of a fluid through a porous medium and through a Hele-Shaw cell.The law was formulated by Henry Darcy based on results of experiments [1] on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences.
The movement of a fluid through porous media is described by the combination of Darcy's law with the principle of conservation of mass in order to express the capillary force or fluid velocity as a function of various other parameters including the effective pore radius, liquid viscosity or permeability. [3]
The phase shift of the reflected wave on total internal reflection can similarly be obtained from the phase angles of r p and r s (whose magnitudes are unity in this case). These phase shifts are different for s and p waves, which is the well-known principle by which total internal reflection is used to effect polarization transformations .
If the shift in is expressed as a fraction of the period, and then scaled to an angle spanning a whole turn, one gets the phase shift, phase offset, or phase difference of relative to . If F {\displaystyle F} is a "canonical" function for a class of signals, like sin ( t ) {\displaystyle \sin(t)} is for all sinusoidal signals, then φ ...