Search results
Results from the WOW.Com Content Network
Many other mathematical objects have their origin in the hyperbola, such as hyperbolic paraboloids (saddle surfaces), hyperboloids ("wastebaskets"), hyperbolic geometry (Lobachevsky's celebrated non-Euclidean geometry), hyperbolic functions (sinh, cosh, tanh, etc.), and gyrovector spaces (a geometry proposed for use in both relativity and ...
Fig. 1: The graph of the hyperelliptic curve : = where () = + + = (+) (+) ().. In algebraic geometry, a hyperelliptic curve is an algebraic curve of genus g > 1, given by an equation of the form + = where f(x) is a polynomial of degree n = 2g + 1 > 4 or n = 2g + 2 > 4 with n distinct roots, and h(x) is a polynomial of degree < g + 2 (if the characteristic of the ground field is not 2, one can ...
In geometry, the elliptic coordinate system is a two-dimensional orthogonal coordinate system in which the coordinate lines are confocal ellipses and hyperbolae. The two foci F 1 {\displaystyle F_{1}} and F 2 {\displaystyle F_{2}} are generally taken to be fixed at − a {\displaystyle -a} and + a {\displaystyle +a} , respectively, on the x ...
The appearance of this geometry in the nineteenth century stimulated the development of non-Euclidean geometry generally, including hyperbolic geometry. Elliptic geometry has a variety of properties that differ from those of classical Euclidean plane geometry. For example, the sum of the interior angles of any triangle is always greater than 180°.
Compared to Euclidean geometry, hyperbolic geometry presents many difficulties for a coordinate system: the angle sum of a quadrilateral is always less than 360°; there are no equidistant lines, so a proper rectangle would need to be enclosed by two lines and two hypercycles; parallel-transporting a line segment around a quadrilateral causes ...
In mathematics, a hyperbolic partial differential equation of order is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first derivatives. [ citation needed ] More precisely, the Cauchy problem can be locally solved for arbitrary initial data along any non-characteristic hypersurface .
In mathematics, an elliptic partial differential equation is a type of partial differential equation (PDE). In mathematical modeling , elliptic PDEs are frequently used to model steady states , unlike parabolic PDE and hyperbolic PDE which generally model phenomena that change in time.
In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes.A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation.