enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lone pair - Wikipedia

    en.wikipedia.org/wiki/Lone_pair

    Lone pairs can contribute to a molecule's dipole moment. NH 3 has a dipole moment of 1.42 D. As the electronegativity of nitrogen (3.04) is greater than that of hydrogen (2.2) the result is that the N-H bonds are polar with a net negative charge on the nitrogen atom and a smaller net positive charge on the hydrogen atoms.

  3. Chemical bonding of water - Wikipedia

    en.wikipedia.org/wiki/Chemical_bonding_of_water

    Chemical bonding of water. Lewis Structure of H 2 O indicating bond angle and bond length. Water (H. 2O) is a simple triatomic bent molecule with C 2v molecular symmetry and bond angle of 104.5° between the central oxygen atom and the hydrogen atoms. Despite being one of the simplest triatomic molecules, its chemical bonding scheme is ...

  4. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    Bent's rule can be extended to rationalize the hybridization of nonbonding orbitals as well. On the one hand, a lone pair (an occupied nonbonding orbital) can be thought of as the limiting case of an electropositive substituent, with electron density completely polarized towards the central atom.

  5. Properties of water - Wikipedia

    en.wikipedia.org/wiki/Properties_of_water

    The lone pairs are closer to the oxygen atom than the electrons sigma bonded to the hydrogens, so they require more space. The increased repulsion of the lone pairs forces the O–H bonds closer to each other. [58] Another consequence of its structure is that water is a polar molecule.

  6. Lewis structure - Wikipedia

    en.wikipedia.org/wiki/Lewis_structure

    Lewis structures – also called Lewis dot formulas, Lewis dot structures, electron dot structures, or Lewis electron dot structures (LEDs) – are diagrams that show the bonding between atoms of a molecule, as well as the lone pairs of electrons that may exist in the molecule. [1][2][3] A Lewis structure can be drawn for any covalently bonded ...

  7. Molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Molecular_geometry

    Molecular geometry is the three-dimensional arrangement of the atoms that constitute a molecule. It includes the general shape of the molecule as well as bond lengths, bond angles, torsional angles and any other geometrical parameters that determine the position of each atom. Molecular geometry influences several properties of a substance ...

  8. Water - Wikipedia

    en.wikipedia.org/wiki/Water

    The hydrogen atoms are close to two corners of a tetrahedron centered on the oxygen. At the other two corners are lone pairs of valence electrons that do not participate in the bonding. In a perfect tetrahedron, the atoms would form a 109.5° angle, but the repulsion between the lone pairs is greater than the repulsion between the hydrogen atoms.

  9. Bent molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Bent_molecular_geometry

    In chemistry, molecules with a non-collinear arrangement of two adjacent bonds have bent molecular geometry, also known as angular or V-shaped. Certain atoms, such as oxygen, will almost always set their two (or more) covalent bonds in non-collinear directions due to their electron configuration. Water (H 2 O) is an example of a bent molecule ...