Search results
Results from the WOW.Com Content Network
For example, in an eight-bit byte, only seven bits represent the magnitude, which can range from 0000000 (0) to 1111111 (127). Thus numbers ranging from −127 10 to +127 10 can be represented once the sign bit (the eighth bit) is added. For example, −43 10 encoded in an eight-bit byte is 10101011 while 43 10 is 00101011.
This scheme can also be referred to as Simple Binary-Coded Decimal (SBCD) or BCD 8421, and is the most common encoding. [12] Others include the so-called "4221" and "7421" encoding – named after the weighting used for the bits – and "Excess-3". [13]
BCD (binary-coded decimal), also called alphanumeric BCD, alphameric BCD, BCD Interchange Code, [1] or BCDIC, [1] is a family of representations of numerals, uppercase Latin letters, and some special and control characters as six-bit character codes. Unlike later encodings such as ASCII, BCD codes were not standardized. Different computer ...
In a hexadecimal system, there are 16 digits, 0 through 9 followed, by convention, with A through F. That is, a hexadecimal "10" is the same as a decimal "16" and a hexadecimal "20" is the same as a decimal "32". An example and comparison of numbers in different bases is described in the chart below.
In computer science, the double dabble algorithm is used to convert binary numbers into binary-coded decimal (BCD) notation. [ 1 ] [ 2 ] It is also known as the shift-and-add -3 algorithm , and can be implemented using a small number of gates in computer hardware, but at the expense of high latency .
Hexadecimal (also known as base-16 or simply hex) is a positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen.
The 16C can display integers in hexadecimal, decimal, octal and binary, and convert numbers from one number base to another. It also deals with floating-point decimal numbers. To accommodate long integers, the display can be 'windowed' by shifting it left and right.
To convert a hexadecimal number into its binary equivalent, simply substitute the corresponding binary digits: 3A 16 = 0011 1010 2 E7 16 = 1110 0111 2. To convert a binary number into its hexadecimal equivalent, divide it into groups of four bits. If the number of bits isn't a multiple of four, simply insert extra 0 bits at the left (called ...