Search results
Results from the WOW.Com Content Network
The mitochondria contains its own set of DNA used to produce proteins found in the electron transport chain. The mitochondrial DNA only codes for about thirteen proteins that are used in processing mitochondrial transcripts, ribosomal proteins , ribosomal RNA , transfer RNA , and protein subunits found in the protein complexes of the electron ...
In prokaryotic cells ATP synthase lies across the plasma membrane, while in eukaryotic cells it lies across the inner mitochondrial membrane. Organisms capable of photosynthesis also have ATP synthase across the thylakoid membrane, which in plants is located in the chloroplast and in cyanobacteria is located in the cytoplasm.
Both the structure of ATP synthase and its underlying gene are remarkably similar in all known forms of life. ATP synthase is powered by a transmembrane electrochemical potential gradient, usually in the form of a proton gradient. In all living organisms, a series of redox reactions is used to produce a transmembrane electrochemical potential ...
Aerobic respiration requires oxygen (O 2) in order to create ATP.Although carbohydrates, fats and proteins are consumed as reactants, aerobic respiration is the preferred method of pyruvate production in glycolysis, and requires pyruvate to the mitochondria in order to be oxidized by the citric acid cycle.
This gradient is used by the F O F 1 ATP synthase complex to make ATP via oxidative phosphorylation. ATP synthase is sometimes described as Complex V of the electron transport chain. [10] The F O component of ATP synthase acts as an ion channel that provides for a proton flux back into the mitochondrial matrix. It is composed of a, b and c ...
A mitochondrion (pl. mitochondria) is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy. [2]
The "machinery" is similar to that in mitochondria except that light energy is used to pump protons across a membrane to produce a proton-motive force. ATP synthase then ensues exactly as in oxidative phosphorylation. [28] Some of the ATP produced in the chloroplasts is consumed in the Calvin cycle, which produces triose sugars.
The generation of ATP by chemiosmosis occurs in mitochondria and chloroplasts, as well as in most bacteria and archaea. For instance, in chloroplasts during photosynthesis, an electron transport chain pumps H + ions (protons) in the stroma (fluid) through the thylakoid membrane to the thylakoid spaces.