enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Respiratory acidosis - Wikipedia

    en.wikipedia.org/wiki/Respiratory_acidosis

    Acute respiratory acidosis occurs when an abrupt failure of ventilation occurs. This failure in ventilation may be caused by depression of the central respiratory center by cerebral disease or drugs, inability to ventilate adequately due to neuromuscular disease (e.g., myasthenia gravis, amyotrophic lateral sclerosis, Guillain–Barré syndrome, muscular dystrophy), or airway obstruction ...

  3. Bicarbonate buffer system - Wikipedia

    en.wikipedia.org/wiki/Bicarbonate_buffer_system

    Most of the carbonic acid then dissociates to bicarbonate and hydrogen ions. The bicarbonate buffer system is an acid-base homeostatic mechanism involving the balance of carbonic acid (H 2 CO 3), bicarbonate ion (HCO − 3), and carbon dioxide (CO 2) in order to maintain pH in the blood and duodenum, among other tissues, to support proper ...

  4. Acid–base homeostasis - Wikipedia

    en.wikipedia.org/wiki/Acidbase_homeostasis

    Acidbase homeostasis is the homeostatic regulation of the pH of the body's extracellular fluid (ECF). [1] The proper balance between the acids and bases (i.e. the pH) in the ECF is crucial for the normal physiology of the body—and for cellular metabolism . [ 1 ]

  5. Respiratory compensation - Wikipedia

    en.wikipedia.org/wiki/Respiratory_compensation

    The respiratory brainstem centers can only compensate for metabolic acid-base disturbances (metabolic acidosis and metabolic alkalosis). Renal compensation is needed to balance respiratory acid-base syndromes (respiratory acidosis and respiratory alkalosis). The kidneys can compensate for both, respiratory and metabolic acid-base imbalances.

  6. Homeostasis - Wikipedia

    en.wikipedia.org/wiki/Homeostasis

    The bicarbonate buffer system regulates the ratio of carbonic acid to bicarbonate to be equal to 1:20, at which ratio the blood pH is 7.4 (as explained in the Henderson–Hasselbalch equation). A change in the plasma pH gives an acidbase imbalance. In acidbase homeostasis there are two mechanisms that can help regulate the pH.

  7. Renal physiology - Wikipedia

    en.wikipedia.org/wiki/Renal_physiology

    The lungs contribute to acid-base homeostasis by regulating carbon dioxide (CO 2) concentration. The kidneys have two very important roles in maintaining the acid-base balance: to reabsorb and regenerate bicarbonate from urine, and to excrete hydrogen ions and fixed acids (anions of acids) into urine.

  8. Kidney - Wikipedia

    en.wikipedia.org/wiki/Kidney

    The two organ systems that help regulate the body's acidbase balance are the kidneys and lungs. Acidbase homeostasis is the maintenance of pH around a value of 7.4. The lungs are the part of respiratory system which helps to maintain acidbase homeostasis by regulating carbon dioxide (CO 2) concentration in the blood. The respiratory ...

  9. Control of ventilation - Wikipedia

    en.wikipedia.org/wiki/Control_of_ventilation

    During very short-term bouts of intense exercise the release of lactic acid into the blood by the exercising muscles causes a fall in the blood plasma pH, independently of the rise in the P CO 2, and this will stimulate pulmonary ventilation sufficiently to keep the blood pH constant at the expense of a lowered P CO 2.