Search results
Results from the WOW.Com Content Network
The techniques of sieve theory can be quite powerful, but they seem to be limited by an obstacle known as the parity problem, which roughly speaking asserts that sieve theory methods have extreme difficulty distinguishing between numbers with an odd number of prime factors and numbers with an even number of prime factors. This parity problem is ...
It is known that the prime number theorem gives an accurate count of the primes within short intervals, either unconditionally [5] or based on the Riemann hypothesis, [6] but the lengths of the intervals for which this has been proven are longer than the intervals between consecutive squares, too long to prove Legendre's conjecture.
Montgomery and Vaughan showed that the exceptional set of even numbers not expressible as the sum of two primes has a density zero, although the set is not proven to be finite. [9] The best current bounds on the exceptional set is E ( x ) < x 0.72 {\displaystyle E(x)<x^{0.72}} (for large enough x ) due to Pintz , [ 10 ] [ 11 ] and E ( x ) ≪ x ...
An example of a decision problem is deciding with the help of an algorithm whether a given natural number is prime. Another example is the problem, "given two numbers x and y, does x evenly divide y?" A method for solving a decision problem, given in the form of an algorithm, is called a decision procedure for that problem.
In the example given above that is achieved on identifying 11 as next prime, giving a list of all primes less than or equal to 80. Note that numbers that will be discarded by a step are still used while marking the multiples in that step, e.g., for the multiples of 3 it is 3 × 3 = 9 , 3 × 5 = 15 , 3 × 7 = 21 , 3 × 9 = 27 , ..., 3 × 15 = 45 ...
In this example, the input is a Boolean function in four variables, : {,} {,} which evaluates to on the values ,,,, and , evaluates to an unknown value on and , and to everywhere else (where these integers are interpreted in their binary form for input to for succinctness of notation).
A prime sieve works by creating a list of all integers up to a desired limit and progressively removing composite numbers (which it directly generates) until only primes are left. This is the most efficient way to obtain a large range of primes; however, to find individual primes, direct primality tests are more efficient [ citation needed ] .
Fermat's little theorem states that if p is prime and a is not divisible by p, then a p − 1 ≡ 1 ( mod p ) . {\displaystyle a^{p-1}\equiv 1{\pmod {p}}.} If one wants to test whether p is prime, then we can pick random integers a not divisible by p and see whether the congruence holds.