Search results
Results from the WOW.Com Content Network
Ordinary differential equations occur in many scientific disciplines, including physics, chemistry, biology, and economics. [1] In addition, some methods in numerical partial differential equations convert the partial differential equation into an ordinary differential equation, which must then be solved.
KPP generates Fortran 90, FORTRAN 77, C, or Matlab code for the integration of ordinary differential equations (ODEs) resulting from chemical reaction mechanisms. Madagascar, an open-source software package for multidimensional data analysis and reproducible computational experiments.
It is an add-on product to MATLAB, and provides a library of solvers that can be used from the MATLAB environment. The toolbox was first released for MATLAB in 1990. The toolbox was first released for MATLAB in 1990.
In mathematics, the Runge–Kutta–Fehlberg method (or Fehlberg method) is an algorithm in numerical analysis for the numerical solution of ordinary differential equations. It was developed by the German mathematician Erwin Fehlberg and is based on the large class of Runge–Kutta methods .
OptimJ – Java-based modelling language; the free edition includes support for lp_solve, GLPK and LP or MPS file formats. PottersWheel – parameter estimation in ordinary differential equations (free MATLAB toolbox for academic use). Pyomo – collection of Python software packages for formulating optimization models.
Lie's group theory of differential equations has been certified, namely: (1) that it unifies the many ad hoc methods known for solving differential equations, and (2) that it provides powerful new ways to find solutions. The theory has applications to both ordinary and partial differential equations. [26]
In mathematics, a differential-algebraic system of equations (DAE) is a system of equations that either contains differential equations and algebraic equations, or is equivalent to such a system. The set of the solutions of such a system is a differential algebraic variety , and corresponds to an ideal in a differential algebra of differential ...
In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...