enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Density estimation - Wikipedia

    en.wikipedia.org/wiki/Density_Estimation

    In statistics, probability density estimation or simply density estimation is the construction of an estimate, based on observed data, of an unobservable underlying probability density function. The unobservable density function is thought of as the density according to which a large population is distributed; the data are usually thought of as ...

  3. Histogram - Wikipedia

    en.wikipedia.org/wiki/Histogram

    The total area of a histogram used for probability density is always normalized to 1. If the length of the intervals on the x-axis are all 1, then a histogram is identical to a relative frequency plot. Histograms are sometimes confused with bar charts. In a histogram, each bin is for a different range of values, so altogether the histogram ...

  4. Freedman–Diaconis rule - Wikipedia

    en.wikipedia.org/wiki/Freedman–Diaconis_rule

    For a set of empirical measurements sampled from some probability distribution, the Freedman–Diaconis rule is designed approximately minimize the integral of the squared difference between the histogram (i.e., relative frequency density) and the density of the theoretical probability distribution.

  5. Frequency (statistics) - Wikipedia

    en.wikipedia.org/wiki/Frequency_(statistics)

    A histogram is a representation of tabulated frequencies, shown as adjacent rectangles or squares (in some of situations), erected over discrete intervals (bins), with an area proportional to the frequency of the observations in the interval. The height of a rectangle is also equal to the frequency density of the interval, i.e., the frequency ...

  6. Probability distribution fitting - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution...

    For example, the parameter (the ... List of probability distributions ranked by goodness of fit [13] Histogram and probability density of a data set fitting the GEV ...

  7. Kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Kernel_density_estimation

    Kernel density estimation of 100 normally distributed random numbers using different smoothing bandwidths.. In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on kernels as weights.

  8. Multivariate kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_kernel...

    The left histogram appears to indicate that the upper half has a higher density than the lower half, whereas the reverse is the case for the right-hand histogram, confirming that histograms are highly sensitive to the placement of the anchor point. [6] Comparison of 2D histograms. Left. Histogram with anchor point at (−1.5, -1.5). Right.

  9. Violin plot - Wikipedia

    en.wikipedia.org/wiki/Violin_plot

    Violin plots are less popular than box plots. Violin plots may be harder to understand for readers not familiar with them. In this case, a more accessible alternative is to plot a series of stacked histograms or kernel density plots. The original meaning of "violin plot" was a combination of a box plot and a two-sided kernel density plot. [1]