enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orthogonal functions - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_functions

    Plot of the Chebyshev rational functions of order n=0,1,2,3 and 4 between x=0.01 and 100. Legendre and Chebyshev polynomials provide orthogonal families for the interval [−1, 1] while occasionally orthogonal families are required on [0, ∞). In this case it is convenient to apply the Cayley transform first, to bring the argument into [−1, 1].

  3. Orthogonalization - Wikipedia

    en.wikipedia.org/wiki/Orthogonalization

    In linear algebra, orthogonalization is the process of finding a set of orthogonal vectors that span a particular subspace.Formally, starting with a linearly independent set of vectors {v 1, ... , v k} in an inner product space (most commonly the Euclidean space R n), orthogonalization results in a set of orthogonal vectors {u 1, ... , u k} that generate the same subspace as the vectors v 1 ...

  4. Synge's theorem - Wikipedia

    en.wikipedia.org/wiki/Synge's_theorem

    Given a geodesic S 1 → M with an orthogonal and parallel vector field along the geodesic (i.e. a parallel section of the normal bundle to the geodesic), then Synge's earlier computation of the second variation formula for arclength shows immediately that the geodesic may be deformed so as to shorten its length. The only tool used at this ...

  5. Orthogonality principle - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_principle

    The orthogonality principle is most commonly used in the setting of linear estimation. [1] In this context, let x be an unknown random vector which is to be estimated based on the observation vector y. One wishes to construct a linear estimator ^ = + for some matrix H and vector c.

  6. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    In Euclidean space, two vectors are orthogonal if and only if their dot product is zero, i.e. they make an angle of 90° (radians), or one of the vectors is zero. [4] Hence orthogonality of vectors is an extension of the concept of perpendicular vectors to spaces of any dimension.

  7. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b ⁡ a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .

  8. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    ⁠ The vector ⁠ ⁠ can be characterized as a right-singular vector corresponding to a singular value of ⁠ ⁠ that is zero. This observation means that if ⁠ A {\displaystyle \mathbf {A} } ⁠ is a square matrix and has no vanishing singular value, the equation has no non-zero ⁠ x {\displaystyle \mathbf {x} } ⁠ as a solution.

  9. Orthogonality - Wikipedia

    en.wikipedia.org/wiki/Orthogonality

    The line segments AB and CD are orthogonal to each other. In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity.Whereas perpendicular is typically followed by to when relating two lines to one another (e.g., "line A is perpendicular to line B"), [1] orthogonal is commonly used without to (e.g., "orthogonal lines A and B").