enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron - Wikipedia

    en.wikipedia.org/wiki/Electron

    The speed of an electron can approach, but never reach, the speed of light in vacuum, c. However, when relativistic electrons—that is, electrons moving at a speed close to c —are injected into a dielectric medium such as water, where the local speed of light is significantly less than c , the electrons temporarily travel faster than light ...

  3. Bohr model - Wikipedia

    en.wikipedia.org/wiki/Bohr_model

    where m e is the electron's mass, e is the elementary charge, k e is the Coulomb constant and Z is the atom's atomic number. It is assumed here that the mass of the nucleus is much larger than the electron mass (which is a good assumption). This equation determines the electron's speed at any radius:

  4. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    In quantum mechanics, an atomic orbital (/ ˈ ɔːr b ɪ t ə l / ⓘ) is a function describing the location and wave-like behavior of an electron in an atom. [1] This function describes an electron's charge distribution around the atom's nucleus, and can be used to calculate the probability of finding an electron in a specific region around ...

  5. Relativistic quantum chemistry - Wikipedia

    en.wikipedia.org/wiki/Relativistic_quantum_chemistry

    Bohr calculated that a 1s orbital electron of a hydrogen atom orbiting at the Bohr radius of 0.0529 nm travels at nearly 1/137 the speed of light. [11] One can extend this to a larger element with an atomic number Z by using the expression v ≈ Z c 137 {\displaystyle v\approx {\frac {Zc}{137}}} for a 1s electron, where v is its radial velocity ...

  6. Speed of electricity - Wikipedia

    en.wikipedia.org/wiki/Speed_of_electricity

    In general, an electron will propagate randomly in a conductor at the Fermi velocity. [5] Free electrons in a conductor follow a random path. Without the presence of an electric field, the electrons have no net velocity. When a DC voltage is applied, the electron drift velocity will increase in speed proportionally to the strength of the ...

  7. Bohr radius - Wikipedia

    en.wikipedia.org/wiki/Bohr_radius

    The Bohr radius (⁠ ⁠) is a physical constant, approximately equal to the most probable distance between the nucleus and the electron in a hydrogen atom in its ground state. It is named after Niels Bohr, due to its role in the Bohr model of an atom. Its value is 5.291 772 105 44 (82) × 10 −11 m. [1] [2]

  8. Atomic units - Wikipedia

    en.wikipedia.org/wiki/Atomic_units

    Atomic units are chosen to reflect the properties of electrons in atoms, which is particularly clear in the classical Bohr model of the hydrogen atom for the bound electron in its ground state: Mass = 1 a.u. of mass; Charge = −1 a.u. of charge; Orbital radius = 1 a.u. of length; Orbital velocity = 1 a.u. of velocity [44]: 597

  9. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    When the electron is bound to the atom in any closer value of n, the electron's energy is lower and is considered negative. Orbital state energy level: atom/ion with nucleus + one electron [ edit ]