Search results
Results from the WOW.Com Content Network
The midpoint method computes + so that the red chord is approximately parallel to the tangent line at the midpoint (the green line). In numerical analysis , a branch of applied mathematics , the midpoint method is a one-step method for numerically solving the differential equation ,
Ordinary differential equations occur in many scientific disciplines, including physics, chemistry, biology, and economics. [1] In addition, some methods in numerical partial differential equations convert the partial differential equation into an ordinary differential equation, which must then be solved.
The midpoint theorem generalizes to the intercept theorem, where rather than using midpoints, both sides are partitioned in the same ratio. [1] [2] The converse of the theorem is true as well. That is if a line is drawn through the midpoint of triangle side parallel to another triangle side then the line will bisect the third side of the triangle.
(Figure 2) Illustration of numerical integration for the equation ′ =, = Blue is the Euler method; green, the midpoint method; red, the exact solution, =. The step size is =
Given two points of interest, finding the midpoint of the line segment they determine can be accomplished by a compass and straightedge construction.The midpoint of a line segment, embedded in a plane, can be located by first constructing a lens using circular arcs of equal (and large enough) radii centered at the two endpoints, then connecting the cusps of the lens (the two points where the ...
Midpoint theorem may refer to the following mathematical theorems: Midpoint theorem (triangle) Midpoint theorem (conics) Midpoint theorem, describing the properties of medians in a triangle: see Median (triangle) Midpoint theorem, also known as Midpoint formula
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems (PDF) (Thesis). Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (1993), Solving ordinary differential equations I: Nonstiff problems , Berlin, New York: Springer-Verlag , ISBN 978-3-540-56670-0 .