Search results
Results from the WOW.Com Content Network
Algorithms used in Computer graphics. See also Category:Computer graphics data structures . Wikimedia Commons has media related to Computer graphic algorithms .
A modern rendering of the Utah teapot, an iconic model in 3D computer graphics created by Martin Newell in 1975. Computer graphics is a sub-field of computer science which studies methods for digitally synthesizing and manipulating visual content. Although the term often refers to the study of three-dimensional computer graphics, it also ...
Despite these differences, 3D computer graphics rely on similar algorithms as 2D computer graphics do in the frame and raster graphics (like in 2D) in the final rendered display. In computer graphics software, the distinction between 2D and 3D is occasionally blurred; 2D applications may use 3D techniques to achieve effects such as lighting ...
The algorithm is used in hardware such as plotters and in the graphics chips of modern graphics cards. It can also be found in many software graphics libraries . Because the algorithm is very simple, it is often implemented in either the firmware or the graphics hardware of modern graphics cards .
3D computer graphics rely on many of the same algorithms as 2D computer vector graphics in the wire-frame model and 2D computer raster graphics in the final rendered display. In computer graphics software, 2D applications may use 3D techniques to achieve effects such as lighting, and similarly, 3D may use some 2D rendering techniques.
This is an accepted version of this page This is the latest accepted revision, reviewed on 28 January 2025. Computer graphics images defined by points, lines and curves This article is about computer illustration. For other uses, see Vector graphics (disambiguation). Example showing comparison of vector graphics and raster graphics upon magnification Vector graphics are a form of computer ...
General-purpose computing on graphics processing units (GPGPU, or less often GPGP) is the use of a graphics processing unit (GPU), which typically handles computation only for computer graphics, to perform computation in applications traditionally handled by the central processing unit (CPU).
Clipping, in the context of computer graphics, is a method to selectively enable or disable rendering operations within a defined region of interest. Mathematically, clipping can be described using the terminology of constructive geometry. A rendering algorithm only draws pixels in the intersection between the