Search results
Results from the WOW.Com Content Network
Basic ways that neurons can interact with each other when converting input to output. Summation, which includes both spatial summation and temporal summation, is the process that determines whether or not an action potential will be generated by the combined effects of excitatory and inhibitory signals, both from multiple simultaneous inputs (spatial summation), and from repeated inputs ...
Temporal summation refers to successive excitatory stimuli on the same location of the postsynaptic neuron. Both types of summation are the result of adding together many excitatory potentials; the difference being whether the multiple stimuli are coming from different locations at the same time (spatial) or at different times from the same ...
Temporal summation occurs when graded potentials within the postsynaptic cell occur so rapidly that they build on each other before the previous ones fade. Spatial summation occurs when postsynaptic potentials from adjacent synapses on the cell occur simultaneously and add together.
Postsynaptic potentials undergo spatial and temporal summation due to their graded nature. [9] Spatial summation: When inputs are received simultaneously at nearby synapses, their postsynaptic potentials combine. Multiple excitatory inputs combine resulting in greater membrane depolarization (more positive).
Fig. 1: Spatial and temporal summation. Two EPSPs innervated in rapid succession sum to produce a larger EPSP, or an action potential in the postsynaptic cell. Coincidence detection relies on separate inputs converging on a common target.
The greater the value of the length constant, the further the potential will travel. A large length constant can contribute to spatial summation—the electrical addition of one potential with potentials from adjacent areas of the cell. The length constant can be defined as: = +
See today's average mortgage rates for a 30-year fixed mortgage, 15-year fixed, jumbo loans, refinance rates and more — including up-to-date rate news.
For example, figure 1 depicts the localized nature and the graded potential nature of these subthreshold membrane potential oscillations, also giving a visual representation of their placement on an action potential graph, comparing subthreshold oscillations versus a fire above the threshold. In some types of neurons, the membrane potential can ...