enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wien's displacement law - Wikipedia

    en.wikipedia.org/wiki/Wien's_displacement_law

    Using Wien's law, one finds a peak emission per nanometer (of wavelength) at a wavelength of about 500 nm, in the green portion of the spectrum near the peak sensitivity of the human eye. [3] [4] On the other hand, in terms of power per unit optical frequency, the Sun's peak emission is at 343 THz or a wavelength of 883 nm in the near infrared ...

  3. Dominant wavelength - Wikipedia

    en.wikipedia.org/wiki/Dominant_wavelength

    Instead, the dominant wavelength is replaced with the complementary wavelength, which will represent the complementary color. To calculate it, the half straight line that starts on that chromaticity and passes through the white point is used; the intersection between this line and the spectral locus is the complementary wavelength.

  4. Black-body radiation - Wikipedia

    en.wikipedia.org/wiki/Black-body_radiation

    A consequence of Wien's displacement law is that the wavelength at which the intensity per unit wavelength of the radiation produced by a black body has a local maximum or peak, , is a function only of the temperature: =, where the constant b, known as Wien's displacement constant, is equal to + 2.897 771 955 × 10 −3 m K. [31]

  5. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    Log–log graphs of peak emission wavelength and radiant exitance vs. black-body temperature. Red arrows show that 5780 K black bodies have 501 nm peak and 63.3 MW/m 2 radiant exitance. With his law, Stefan also determined the temperature of the Sun's surface. [23]

  6. Wavelength - Wikipedia

    en.wikipedia.org/wiki/Wavelength

    Relationship between wavelength, angular wavelength, and other wave properties. A quantity related to the wavelength is the angular wavelength (also known as reduced wavelength), usually symbolized by ƛ ("lambda-bar" or barred lambda). It is equal to the ordinary wavelength reduced by a factor of 2π (ƛ = λ/2π), with SI units of meter per ...

  7. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    The 41.8% point is the wavelength-frequency-neutral peak (i.e. the peak in power per unit change in logarithm of wavelength or frequency). These are the points at which the respective Planck-law functions ⁠ 1 / λ 5 ⁠ , ν 3 and ⁠ ν 2 / λ 2 ⁠ , respectively, divided by exp ( ⁠ hν / k B T ⁠ ) − 1 attain their maxima.

  8. Spectral flux density - Wikipedia

    en.wikipedia.org/wiki/Spectral_flux_density

    The relative spectral flux density is also useful if we wish to compare a source's flux density at one wavelength with the same source's flux density at another wavelength; for example, if we wish to demonstrate how the Sun's spectrum peaks in the visible part of the EM spectrum, a graph of the Sun's relative spectral flux density will suffice.

  9. Luminous intensity - Wikipedia

    en.wikipedia.org/wiki/Luminous_intensity

    In photometry, luminous intensity is a measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle, based on the luminosity function, a standardized model of the sensitivity of the human eye. The SI unit of luminous intensity is the candela (cd), an SI base unit.