Search results
Results from the WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
For substances with an A- or α- prefix such as α-amylase, please see the parent page (in this case Amylase). A23187 (Calcimycin, Calcium Ionophore); Abamectine; Abietic acid
This is an index of lists of molecules (i.e. by year, number of atoms, etc.). Millions of molecules have existed in the universe since before the formation of Earth. Three of them, carbon dioxide, water and oxygen were necessary for the growth of life.
Nucleic acids are generally very large molecules. Indeed, DNA molecules are probably the largest individual molecules known. Well-studied biological nucleic acid molecules range in size from 21 nucleotides (small interfering RNA) to large chromosomes (human chromosome 1 is a single molecule that contains 247 million base pairs [18]).
Inorganic ions in animals and plants are ions necessary for vital cellular activity. [1] In body tissues, ions are also known as electrolytes, essential for the electrical activity needed to support muscle contractions and neuron activation. They contribute to osmotic pressure of body fluids as well as performing a number of other important ...
DNA uses the deoxynucleotides C, G, A, and T, while RNA uses the ribonucleotides (which have an extra hydroxyl(OH) group on the pentose ring) C, G, A, and U. Modified bases are fairly common (such as with methyl groups on the base ring), as found in ribosomal RNA or transfer RNAs or for discriminating the new from old strands of DNA after ...
This nucleotide contains the five-carbon sugar deoxyribose (at center), a nucleobase called adenine (upper right), and one phosphate group (left). The deoxyribose sugar joined only to the nitrogenous base forms a Deoxyribonucleoside called deoxyadenosine, whereas the whole structure along with the phosphate group is a nucleotide, a constituent of DNA with the name deoxyadenosine monophosphate.
DNA nanotechnology is the field that seeks to design nanoscale structures using the molecular recognition properties of DNA molecules. [178] DNA nanotechnology uses the unique molecular recognition properties of DNA and other nucleic acids to create self-assembling branched DNA complexes with useful properties. [179]