enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    A form of the epsilondelta definition of continuity was first given by Bernard Bolzano in 1817. Augustin-Louis Cauchy defined continuity of = as follows: an infinitely small increment of the independent variable x always produces an infinitely small change (+) of the dependent variable y (see e.g. Cours d'Analyse, p. 34).

  3. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    Although implicit in the development of calculus of the 17th and 18th centuries, the modern idea of the limit of a function goes back to Bolzano who, in 1817, introduced the basics of the epsilon-delta technique (see (ε, δ)-definition of limit below) to define continuous functions. However, his work was not known during his lifetime.

  4. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    The modern definition of a limit goes back to Bernard Bolzano who, in 1817, developed the basics of the epsilon-delta technique to define continuous functions. However, his work remained unknown to other mathematicians until thirty years after his death. [5]

  5. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    The delta function was introduced by physicist Paul Dirac, and has since been applied routinely in physics and engineering to model point masses and instantaneous impulses. It is called the delta function because it is a continuous analogue of the Kronecker delta function, which is usually defined on a discrete domain and takes values 0 and 1.

  6. Intermediate value theorem - Wikipedia

    en.wikipedia.org/wiki/Intermediate_value_theorem

    Intermediate value theorem: Let be a continuous function defined on [,] and let be a number with () < < ().Then there exists some between and such that () =.. In mathematical analysis, the intermediate value theorem states that if is a continuous function whose domain contains the interval [a, b], then it takes on any given value between () and () at some point within the interval.

  7. Limit of a sequence - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_sequence

    A limit of a sequence of points () in a topological space is a special case of a limit of a function: the domain is in the space {+}, with the induced topology of the affinely extended real number system, the range is , and the function argument tends to +, which in this space is a limit point of .

  8. Uniform continuity - Wikipedia

    en.wikipedia.org/wiki/Uniform_continuity

    When we speak of a function being continuous on an interval, we mean that the function is continuous at every point of the interval. In contrast, uniform continuity is a global property of f {\displaystyle f} , in the sense that the standard definition of uniform continuity refers to every point of X {\displaystyle X} .

  9. Uniform convergence - Wikipedia

    en.wikipedia.org/wiki/Uniform_convergence

    A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = ⁡ (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).