Search results
Results from the WOW.Com Content Network
This list of research methods in biology is an index to articles about research methodologies used in various branches of biology. Research design and analysis [ edit ]
Software Description Platform License Developer .NET Bio Language-neutral toolkit built using the Microsoft 4.0 .NET Framework to help developers, researchers, and scientists .NET Framework: Apache: Collaborative project AMPHORA: Metagenomics analysis software Linux: GPL: Jonathan Eisen: Anduril: Component-based workflow framework for data analysis
Experimental benchmarking allows researchers to learn about the accuracy of non-experimental research designs. Specifically, one can compare observational results to experimental findings to calibrate bias. Under ordinary conditions, carrying out an experiment gives the researchers an unbiased estimate of their parameter of interest.
The advantage of using standard formats is that even though a particular software application may eventually become unsupported and even unusable, the models developed by that application can be easily transferred to more modern equivalents. This allows scientific research to be reproducible long after the original publication of the work.
These designs compare two or more groups on one or more variable, such as the effect of gender on grades. The third type of non-experimental research is a longitudinal design. A longitudinal design examines variables such as performance exhibited by a group or groups over time (see Longitudinal study).
For example, the upstream regions (promoters) of co-expressed genes can be searched for over-represented regulatory elements. Examples of clustering algorithms applied in gene clustering are k-means clustering, self-organizing maps (SOMs), hierarchical clustering, and consensus clustering methods.
Reproducibility, closely related to replicability and repeatability, is a major principle underpinning the scientific method.For the findings of a study to be reproducible means that results obtained by an experiment or an observational study or in a statistical analysis of a data set should be achieved again with a high degree of reliability when the study is replicated.
This study was an example of a natural experiment, called a case-crossover experiment, where the exposure is removed for a time and then returned. The study also noted its own weaknesses which potentially suggest that the inability to control variables in natural experiments can impede investigators from drawing firm conclusions.' [ 12 ]