enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron configurations of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Electron_configurations_of...

    Here [Ne] refers to the core electrons which are the same as for the element neon (Ne), the last noble gas before phosphorus in the periodic table. The valence electrons (here 3s 2 3p 3) are written explicitly for all atoms. Electron configurations of elements beyond hassium (element 108) have never been measured; predictions are used below.

  3. Periodic table (electron configurations) - Wikipedia

    en.wikipedia.org/wiki/Periodic_table_(electron...

    Configurations of elements 109 and above are not available. Predictions from reliable sources have been used for these elements. Grayed out electron numbers indicate subshells filled to their maximum. Bracketed noble gas symbols on the left represent inner configurations that are the same in each period. Written out, these are: He, 2, helium : 1s 2

  4. Rubidium - Wikipedia

    en.wikipedia.org/wiki/Rubidium

    Rubidium is the second most electropositive of the stable alkali metals and has a very low first ionization energy of only 403 kJ/mol. [12] It has an electron configuration of [Kr]5s 1 and is photosensitive. [15]: 382 Due to its strong electropositive nature, rubidium reacts explosively with water [16] to produce rubidium hydroxide and hydrogen ...

  5. Rutherfordium - Wikipedia

    en.wikipedia.org/wiki/Rutherfordium

    The oxidation state +4 is the only stable state for the latter two elements and therefore rutherfordium should also exhibit a stable +4 state. [72] In addition, rutherfordium is also expected to be able to form a less stable +3 state. [2] The standard reduction potential of the Rf 4+ /Rf couple is predicted to be higher than −1.7 V. [73]

  6. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    The configuration that corresponds to the lowest electronic energy is called the ground state. Any other configuration is an excited state. As an example, the ground state configuration of the sodium atom is 1s 2 2s 2 2p 6 3s 1, as deduced from the Aufbau principle (see below).

  7. Ruthenium - Wikipedia

    en.wikipedia.org/wiki/Ruthenium

    Ruthenium is the only 4d transition metal that can assume the group oxidation state +8, and even then it is less stable there than the heavier congener osmium: this is the first group from the left of the table where the second and third-row transition metals display notable differences in chemical behavior.

  8. Periodic table - Wikipedia

    en.wikipedia.org/wiki/Periodic_table

    Starting from the third element, lithium, the first shell is full, so its third electron occupies a 2s orbital, giving a 1s 2 2s 1 configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a " core shell ".

  9. Ground state - Wikipedia

    en.wikipedia.org/wiki/Ground_state

    Energy levels for an electron in an atom: ground state and excited states. After absorbing energy, an electron may jump from the ground state to a higher-energy excited state. The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system.