Search results
Results from the WOW.Com Content Network
Since an entropy is a state function, the entropy change of the system for an irreversible path is the same as for a reversible path between the same two states. [22] However, the heat transferred to or from the surroundings is different as well as its entropy change. We can calculate the change of entropy only by integrating the above formula.
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
In the case of an ideal gas, the heat capacity is constant and the ideal gas law PV = nRT gives that α V V = V/T = nR/p, with n the number of moles and R the molar ideal-gas constant. So, the molar entropy of an ideal gas is given by (,) = (,) + . In this expression C P now is the molar heat capacity. The entropy of inhomogeneous ...
In a stretched out piece of rubber, for example, the arrangement of the molecules of its structure has an "ordered" distribution and has zero entropy, while the "disordered" kinky distribution of the atoms and molecules in the rubber in the non-stretched state has positive entropy. Similarly, in a gas, the order is perfect and the measure of ...
Gibbs considered the following difficulty that arises if the ideal gas entropy is not extensive. [1] Two containers of an ideal gas sit side-by-side. The gas in container #1 is identical in every respect to the gas in container #2 (i.e. in volume, mass, temperature, pressure, etc). Accordingly, they have the same entropy S. Now a door in the ...
The Sackur–Tetrode equation is an expression for the entropy of a monatomic ideal gas. [1]It is named for Hugo Martin Tetrode [2] (1895–1931) and Otto Sackur [3] (1880–1914), who developed it independently as a solution of Boltzmann's gas statistics and entropy equations, at about the same time in 1912.