Search results
Results from the WOW.Com Content Network
Maximum cardinality matching is a fundamental problem in graph theory. [1] We are given a graph G, and the goal is to find a matching containing as many edges as possible; that is, a maximum cardinality subset of the edges such that each vertex is adjacent to at most one edge of the subset. As each edge will cover exactly two vertices, this ...
Solution of a travelling salesman problem: the black line shows the shortest possible loop that connects every red dot. In the theory of computational complexity, the travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the ...
Matching (graph theory) MaxDDBS; Maximal independent set; Maximum agreement subtree problem; Maximum common edge subgraph; Maximum common induced subgraph; Maximum cut; Maximum flow problem; Maximum weight matching; Metric k-center; Minimum k-cut; Mixed Chinese postman problem; Multi-trials technique
A special case of this method is the use of the modular product of graphs to reduce the problem of finding the maximum common induced subgraph of two graphs to the problem of finding a maximum clique in their product. [7] In automatic test pattern generation, finding cliques can help to bound the size of a test set. [8]
In the mathematical discipline of graph theory, a matching or independent edge set in an undirected graph is a set of edges without common vertices. [1] In other words, a subset of the edges is a matching if each vertex appears in at most one edge of that matching. Finding a matching in a bipartite graph can be treated as a network flow problem.
In the study of graph coloring problems in mathematics and computer science, a greedy coloring or sequential coloring [1] is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the graph in sequence and assigns each vertex its first available color. Greedy colorings can be found in linear time, but ...
Often, the problem is to decompose a graph into subgraphs isomorphic to a fixed graph; for instance, decomposing a complete graph into Hamiltonian cycles. Other problems specify a family of graphs into which a given graph should be decomposed, for instance, a family of cycles, or decomposing a complete graph K n into n − 1 specified trees ...
It is a basic algorithm in graph theory which can be used as a part of other graph algorithms. For instance, BFS is used by Dinic's algorithm to find maximum flow in a graph. Moreover, BFS is also one of the kernel algorithms in Graph500 benchmark, which is a benchmark for data-intensive supercomputing problems. [ 1 ]