Search results
Results from the WOW.Com Content Network
The windy postman problem is a variant of the route inspection problem in which the input is an undirected graph, but where each edge may have a different cost for traversing it in one direction than for traversing it in the other direction. In contrast to the solutions for directed and undirected graphs, it is NP-complete. [11] [12]
Often, the problem is to decompose a graph into subgraphs isomorphic to a fixed graph; for instance, decomposing a complete graph into Hamiltonian cycles. Other problems specify a family of graphs into which a given graph should be decomposed, for instance, a family of cycles, or decomposing a complete graph K n into n − 1 specified trees ...
When phrased as a graph theory problem, the assignment problem can be extended from bipartite graphs to arbitrary graphs. The corresponding problem, of finding a matching in a weighted graph where the sum of weights is maximized, is called the maximum weight matching problem .
Matching (graph theory) MaxDDBS; Maximal independent set; Maximum agreement subtree problem; Maximum common edge subgraph; Maximum common induced subgraph; Maximum cut; Maximum flow problem; Maximum weight matching; Metric k-center; Minimum k-cut; Mixed Chinese postman problem; Multi-trials technique
The knight's tour problem is the mathematical problem of finding a knight's tour. Creating a program to find a knight's tour is a common problem given to computer science students. [ 3 ] Variations of the knight's tour problem involve chessboards of different sizes than the usual 8 × 8 , as well as irregular (non-rectangular) boards.
Download as PDF; Printable version; In other projects Wikidata item; ... Pages in category "Unsolved problems in graph theory" The following 32 pages are in this ...
In the study of graph coloring problems in mathematics and computer science, a greedy coloring or sequential coloring [1] is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the graph in sequence and assigns each vertex its first available color. Greedy colorings can be found in linear time, but ...
The problems of finding a Hamiltonian path and a Hamiltonian cycle can be related as follows: In one direction, the Hamiltonian path problem for graph G can be related to the Hamiltonian cycle problem in a graph H obtained from G by adding a new universal vertex x, connecting x to all vertices of G. Thus, finding a Hamiltonian path cannot be ...