Search results
Results from the WOW.Com Content Network
The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon.The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.
A classification of black holes by mass: Micro black hole and extra-dimensional black hole; Planck length; Primordial black hole, a hypothetical leftover of the Big Bang; Stellar black hole, which could either be a static black hole or a rotating black hole; Supermassive black hole, which could also either be a static black hole or a rotating ...
A black hole with the mass of a car would have a diameter of about 10 −24 m and take a nanosecond to evaporate, during which time it would briefly have a luminosity of more than 200 times that of the Sun. Lower-mass black holes are expected to evaporate even faster; for example, a black hole of mass 1 TeV/c 2 would take less than 10 −88 ...
In Einstein's theory of general relativity, the Schwarzschild metric (also known as the Schwarzschild solution) is an exact solution to the Einstein field equations that describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, angular momentum of the mass, and universal cosmological constant are all zero.
The Kerr–Newman metric describes the spacetime geometry around a mass which is electrically charged and rotating. It is a vacuum solution which generalizes the Kerr metric (which describes an uncharged, rotating mass) by additionally taking into account the energy of an electromagnetic field, making it the most general asymptotically flat and stationary solution of the Einstein–Maxwell ...
Slow motion computer simulation of the black hole binary system GW150914 as seen by a nearby observer, during 0.33 s of its final inspiral, merge, and ringdown.The star field behind the black holes is being heavily distorted and appears to rotate and move, due to extreme gravitational lensing, as spacetime itself is distorted and dragged around by the rotating black holes.
Bending of waves in a gravitational field. Due to gravity, time passes more slowly at the bottom than at the top, causing the wave-fronts (shown in black) to gradually bend downwards. The green arrow shows the direction of the apparent "gravitational attraction". The orbital equation can be derived from the Hamilton–Jacobi equation. [15]
The no-hair theorem was originally formulated for black holes within the context of a four-dimensional spacetime, obeying the Einstein field equation of general relativity with zero cosmological constant, in the presence of electromagnetic fields, or optionally other fields such as scalar fields and massive vector fields (Proca fields, etc.).