Search results
Results from the WOW.Com Content Network
Since liquid water flows, ocean waters cycle and flow in currents around the world. Since water easily changes phase, it can be carried into the atmosphere as water vapour or frozen as an iceberg. It can then precipitate or melt to become liquid water again. All marine life is immersed in water, the matrix and womb of life itself. [7]
CaCO 3 is supersatured in the great majority of ocean surface waters and undersaturated at depth, [10] meaning the shells are more likely to dissolve as they sink to ocean depths. CaCO 3 can also be dissolved through metabolic dissolution (i.e. can be used as food and excreted) and thus deep ocean sediments have very little calcium carbonate. [16]
Carbon dioxide also dissolves directly from the atmosphere into bodies of water (ocean, lakes, etc.), as well as dissolving in precipitation as raindrops fall through the atmosphere. When dissolved in water, carbon dioxide reacts with water molecules and forms carbonic acid, which contributes to ocean acidity. It can then be absorbed by rocks ...
Aqueous carbon dioxide reacts with water to form carbonic acid which is very unstable and will dissociate rapidly into hydronium and bicarbonate. Therefore, in seawater, dissolved inorganic carbon is commonly referred to as the collection of bicarbonate, carbonate ions, and dissolved carbon dioxide (CO 2, H 2 CO 3, HCO − 3, CO 2− 3).
Ocean currents are patterns of water movement that influence climate zones and weather patterns around the world. They are primarily driven by winds and by seawater density, although many other factors influence them – including the shape and configuration of the ocean basin they flow through. The two basic types of currents – surface and ...
Each year, the ocean and atmosphere exchange large amounts of carbon. A major controlling factor in oceanic-atmospheric carbon exchange is thermohaline circulation. In regions of ocean upwelling, carbon-rich water from the deep ocean comes to the surface and releases carbon into the atmosphere as carbon dioxide.
This warm water can dissolve less oxygen, and is produced in smaller quantities, producing a sluggish circulation with little deep water oxygen. [30] The effect of this warm water propagates through the ocean, and reduces the amount of CO 2 that the oceans can hold in solution, which makes the oceans release large quantities of CO 2 into the ...
Sea water can prevent desiccation although it is much saltier than fresh water. For oceanic organism, not like terrestrial plants and animals, water is never a problem. Sea water carries oxygen and nutrients to oceanic organisms, which allow them to be planktonic or settled. The dissolved minerals and oxygen flow with currents/circulations.