enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    A connected graph has an Euler cycle if and only if every vertex has an even number of incident edges. The term Eulerian graph has two common meanings in graph theory. One meaning is a graph with an Eulerian circuit, and the other is a graph with every vertex of even degree. These definitions coincide for connected graphs. [2]

  3. Grinberg's theorem - Wikipedia

    en.wikipedia.org/wiki/Grinberg's_theorem

    A graph that can be proven non-Hamiltonian using Grinberg's theorem. In graph theory, Grinberg's theorem is a necessary condition for a planar graph to contain a Hamiltonian cycle, based on the lengths of its face cycles. If a graph does not meet this condition, it is not Hamiltonian.

  4. Hamiltonian (control theory) - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_(control_theory)

    Together, the state and costate equations describe the Hamiltonian dynamical system (again analogous to but distinct from the Hamiltonian system in physics), the solution of which involves a two-point boundary value problem, given that there are boundary conditions involving two different points in time, the initial time (the differential ...

  5. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    To improve the lower bound, a better way of creating an Eulerian graph is needed. By the triangle inequality, the best Eulerian graph must have the same cost as the best travelling salesman tour; hence, finding optimal Eulerian graphs is at least as hard as TSP. One way of doing this is by minimum weight matching using algorithms with a ...

  6. Semi-implicit Euler method - Wikipedia

    en.wikipedia.org/wiki/Semi-implicit_Euler_method

    However, the semi-implicit Euler method is a symplectic integrator, unlike the standard method. As a consequence, the semi-implicit Euler method almost conserves the energy (when the Hamiltonian is time-independent). Often, the energy increases steadily when the standard Euler method is applied, making it far less accurate.

  7. Chinese postman problem - Wikipedia

    en.wikipedia.org/wiki/Chinese_postman_problem

    When the graph has an Eulerian circuit (a closed walk that covers every edge once), that circuit is an optimal solution. Otherwise, the optimization problem is to find the smallest number of graph edges to duplicate (or the subset of edges with the minimum possible total weight) so that the resulting multigraph does have an Eulerian circuit. [ 1 ]

  8. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    All Hamiltonian graphs are biconnected, but a biconnected graph need not be Hamiltonian (see, for example, the Petersen graph). [9] An Eulerian graph G (a connected graph in which every vertex has even degree) necessarily has an Euler tour, a closed walk passing through each edge of G exactly once.

  9. Backward Euler method - Wikipedia

    en.wikipedia.org/wiki/Backward_Euler_method

    The backward Euler method is an implicit method: the new approximation + appears on both sides of the equation, and thus the method needs to solve an algebraic equation for the unknown +. For non-stiff problems, this can be done with fixed-point iteration: