Search results
Results from the WOW.Com Content Network
The value of the function at a maximum point is called the maximum value of the function, denoted (()), and the value of the function at a minimum point is called the minimum value of the function, (denoted (()) for clarity). Symbolically, this can be written as follows:
The extreme value theorem was originally proven by Bernard Bolzano in the 1830s in a work Function Theory but the work remained unpublished until 1930. Bolzano's proof consisted of showing that a continuous function on a closed interval was bounded, and then showing that the function attained a maximum and a minimum value.
The sample maximum and minimum are the least robust statistics: they are maximally sensitive to outliers.. This can either be an advantage or a drawback: if extreme values are real (not measurement errors), and of real consequence, as in applications of extreme value theory such as building dikes or financial loss, then outliers (as reflected in sample extrema) are important.
Important special cases of the order statistics are the minimum and maximum value of a sample, and (with some qualifications discussed below) the sample median and other sample quantiles. When using probability theory to analyze order statistics of random samples from a continuous distribution , the cumulative distribution function is used to ...
It is calculated as the difference between the largest and smallest values (also known as the sample maximum and minimum). [1] It is expressed in the same units as the data. The range provides an indication of statistical dispersion. Since it only depends on two of the observations, it is most useful in representing the dispersion of small data ...
The maximum of a subset of a preordered set is an element of which is greater than or equal to any other element of , and the minimum of is again defined dually. In the particular case of a partially ordered set , while there can be at most one maximum and at most one minimum there may be multiple maximal or minimal elements.
The golden-section search is a technique for finding an extremum (minimum or maximum) of a function inside a specified interval. For a strictly unimodal function with an extremum inside the interval, it will find that extremum, while for an interval containing multiple extrema (possibly including the interval boundaries), it will converge to one of them.
Gumbel has shown that the maximum value (or last order statistic) in a sample of random variables following an exponential distribution minus the natural logarithm of the sample size [7] approaches the Gumbel distribution as the sample size increases.