Search results
Results from the WOW.Com Content Network
The mode of a sample is the element that occurs most often in the collection. For example, the mode of the sample [1, 3, 6, 6, 6, 6, 7, 7, 12, 12, 17] is 6. Given the list of data [1, 1, 2, 4, 4] its mode is not unique. A dataset, in such a case, is said to be bimodal, while a set with more than two modes may be described as multimodal.
The term "mode" in this context refers to any peak of the distribution, not just to the strict definition of mode which is usual in statistics. If there is a single mode, the distribution function is called "unimodal". If it has more modes it is "bimodal" (2), "trimodal" (3), etc., or in general, "multimodal". [2]
where p 1 and p 2 are the proportion contained in the primary (that with the greater amplitude) and secondary (that with the lesser amplitude) mode and φ 1 and φ 2 are the φ-sizes of the primary and secondary mode. The φ-size is defined as minus one times the log of the data size taken to the base 2. This transformation is commonly used in ...
The mode of the block can be retrieved from . By Theorem 1, the mode can be either an element of the prefix (indices of [:] before the start of the span), an element of the suffix (indices of [:] after the end of the span), or .
Python is a high-level, general-purpose programming language. Its design philosophy emphasizes code readability with the use of significant indentation. [32] Python is dynamically type-checked and garbage-collected. It supports multiple programming paradigms, including structured (particularly procedural), object-oriented and functional ...
OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms.
The Beta distribution on [0,1], a family of two-parameter distributions with one mode, of which the uniform distribution is a special case, and which is useful in estimating success probabilities. The four-parameter Beta distribution , a straight-forward generalization of the Beta distribution to arbitrary bounded intervals [ a , b ...
Optimal Mode Decomposition: Optimal Mode Decomposition (OMD) recasts the DMD procedure as an optimization problem and allows the user to directly impose the rank of the identified system. [6] Provided this rank is chosen properly, OMD can produce linear models with smaller residual errors and more accurate eigenvalues on both synthetic and ...