enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hemoglobin - Wikipedia

    en.wikipedia.org/wiki/Hemoglobin

    The sigmoidal shape of hemoglobin's oxygen-dissociation curve results from cooperative binding of oxygen to hemoglobin. Hence, blood with high carbon dioxide levels is also lower in pH (more acidic). Hemoglobin can bind protons and carbon dioxide, which causes a conformational change in the protein and facilitates the release of oxygen.

  3. Bohr effect - Wikipedia

    en.wikipedia.org/wiki/Bohr_effect

    Hemoglobin's oxygen binding affinity (see oxygen–haemoglobin dissociation curve) is inversely related both to acidity and to the concentration of carbon dioxide. [1] That is, the Bohr effect refers to the shift in the oxygen dissociation curve caused by changes in the concentration of carbon dioxide or the pH of the environment.

  4. Heme - Wikipedia

    en.wikipedia.org/wiki/Heme

    Binding of oxygen to a heme prosthetic group. Heme (American English), or haem (Commonwealth English, both pronounced /hi:m/ HEEM), is a ring-shaped iron-containing molecular component of hemoglobin, which is necessary to bind oxygen in the bloodstream. It is composed of four pyrrole rings with 2 vinyl and 2 propionic acid side chains. [1]

  5. Dioxygen in biological reactions - Wikipedia

    en.wikipedia.org/wiki/Dioxygen_in_biological...

    Monooxygenase uses oxygen for many oxidation reactions in the body. Oxygen that is suspended in the blood plasma equalizes into the tissue according to Henry's law. Carbon dioxide, a waste product, is released from the cells and into the blood, where it is converted to bicarbonate or binds to hemoglobin for transport to the lungs.

  6. Carboxyhemoglobin - Wikipedia

    en.wikipedia.org/wiki/Carboxyhemoglobin

    Upon arrival to the cellular region, oxygen is released at the tissue due to a conformational change in hemoglobin as caused by ionization of hemoglobin's surface due to the "acidification" of the tissue's local pH (meaning a relatively higher concentration of 'acidic' protons / hydrogen ions annotated as H +; an acidic pH is commonly ...

  7. Haldane effect - Wikipedia

    en.wikipedia.org/wiki/Haldane_effect

    This amount of carbaminohemoglobin formed is inversely proportional to the amount of oxygen attached to hemoglobin. Thus, at lower oxygen saturation, more carbaminohemoglobin is formed. These dynamics explain the relative difference in hemoglobin's affinity for carbon dioxide depending on oxygen levels known as the Haldane effect. [2]

  8. Oxygen–hemoglobin dissociation curve - Wikipedia

    en.wikipedia.org/wiki/Oxygenhemoglobin...

    The oxygenhemoglobin dissociation curve, also called the oxyhemoglobin dissociation curve or oxygen dissociation curve (ODC), is a curve that plots the proportion of hemoglobin in its saturated (oxygen-laden) form on the vertical axis against the prevailing oxygen tension on the horizontal axis. This curve is an important tool for ...

  9. Carbaminohemoglobin - Wikipedia

    en.wikipedia.org/wiki/Carbaminohemoglobin

    When carbon dioxide binds to hemoglobin, carbaminohemoglobin is formed, lowering hemoglobin's affinity for oxygen via the Bohr effect. The reaction is formed between a carbon dioxide molecule and an amino residue. [12] In the absence of oxygen, unbound hemoglobin molecules have a greater chance of becoming carbaminohemoglobin.