Search results
Results from the WOW.Com Content Network
Protein before and after folding Results of protein folding. Protein folding is the physical process by which a protein, after synthesis by a ribosome as a linear chain of amino acids, changes from an unstable random coil into a more ordered three-dimensional structure. This structure permits the protein to become biologically functional. [1]
Globular proteins are somewhat water-soluble (forming colloids in water), unlike the fibrous or membrane proteins. [1] There are multiple fold classes of globular proteins, since there are many different architectures that can fold into a roughly spherical shape. The term globin can refer more specifically to proteins including the globin fold. [2]
Proteins also have structural or mechanical functions, such as actin and myosin in muscle and the proteins in the cytoskeleton, which form a system of scaffolding that maintains cell shape. Other proteins are important in cell signaling, immune responses , cell adhesion , and the cell cycle .
Biomolecular structure is the intricate folded, three-dimensional shape that is formed by a molecule of protein, DNA, or RNA, and that is important to its function.The structure of these molecules may be considered at any of several length scales ranging from the level of individual atoms to the relationships among entire protein subunits.
Its shape can change in response to changes in its environment or other factors; each possible shape is called a conformation, and a transition between them is called a conformational change. Factors that may induce such changes include temperature, pH , voltage , light in chromophores , concentration of ions , phosphorylation , or the binding ...
Proper protein folding is key to whether a globular or membrane protein can do its job correctly; it must be folded into the native shape to function. However, hydrogen bonds and cofactor-protein binding, which play a crucial role in folding, are rather weak, and thus, easily affected by heat, acidity, varying salt concentrations, chelating ...
Protein chaperones within the cytoplasm of a cell assist a newly synthesised polypeptide to attain its native state. Some chaperone proteins are highly specific in their function, for example, protein disulfide isomerase; others are general in their function and may assist most globular proteins, for example, the prokaryotic GroEL/GroES system ...
However, the structure of a protein gives much more insight in the function of the protein than its sequence. Therefore, a number of methods for the computational prediction of protein structure from its sequence have been developed. [39] Ab initio prediction methods use just the sequence of the protein.