Ad
related to: tensile gauge length formula for steel
Search results
Results from the WOW.Com Content Network
Tensile testing, also known as tension testing, [1] is a fundamental materials science and engineering test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength , breaking strength , maximum elongation and reduction in area. [ 2 ]
Beyond the Lüders strain, the stress increases due to strain hardening until it reaches the ultimate tensile stress. During this stage, the cross-sectional area decreases uniformly along the gauge length, due to the incompressibility of plastic flow (not because of the Poisson effect, which is an elastic phenomenon
The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.
Necking results from an instability during tensile deformation when the cross-sectional area of the sample decreases by a greater proportion than the material strain hardens. Armand Considère published the basic criterion for necking in 1885, in the context of the stability of large scale structures such as bridges. [ 2 ]
The first nanotube ropes (20 mm long) whose tensile strength was published (in 2000) had a strength of 3.6 GPa, still well below their theoretical limit. [41] The density is different depending on the manufacturing method, and the lowest value is 0.037 or 0.55 (solid).
The strength of structures of equal cross-sectional area loaded in tension is independent of shape of the cross-section. Materials loaded in tension are susceptible to stress concentrations such as material defects or abrupt changes in geometry. However, materials exhibiting ductile behaviour (many metals for example) can tolerate some defects ...
The stress intensity factor at the crack tip of a compact tension specimen is [4] = [() / / + / / + /] where is the applied load, is the thickness of the specimen, is the crack length, and is the effective width of the specimen being the distance between the centreline of the holes and the backface of the coupon.
Stress is the ratio of force over area (S = R/A, where S is the stress, R is the internal resisting force and A is the cross-sectional area). Strain is the ratio of change in length to the original length, when a given body is subjected to some external force (Strain= change in length÷the original length).
Ad
related to: tensile gauge length formula for steel