Search results
Results from the WOW.Com Content Network
In physics, a sinusoidal plane wave is a special case of plane wave: a field whose value varies as a sinusoidal function of time and of the distance from some fixed plane. It is also called a monochromatic plane wave , with constant frequency (as in monochromatic radiation ).
In physics, a sinusoidal plane wave is a special case of plane wave: a field whose value varies as a sinusoidal function of time and of the distance from some fixed plane. It is also called a monochromatic plane wave, with constant frequency (as in monochromatic radiation).
The term is also used, even more specifically, to mean a "monochromatic" or sinusoidal plane wave: a travelling plane wave whose profile () is a sinusoidal function. That is, (,) = (() +) The parameter , which may be a scalar or a vector, is called the amplitude of the wave; the scalar coefficient is its "spatial frequency"; and the scalar is its "phase shift".
A plane wave is an important mathematical idealization where the disturbance is identical along any (infinite) plane normal to a specific direction of travel. Mathematically, the simplest wave is a sinusoidal plane wave in which at any point the field experiences simple harmonic motion at one frequency.
A solution to this (two-way) wave equation can be quite complicated. Still, it can be analyzed as a linear combination of simple solutions that are sinusoidal plane waves with various directions of propagation and wavelengths but all with the same propagation speed c.
Mathematically, the simplest kind of transverse wave is a plane linearly polarized sinusoidal one. "Plane" here means that the direction of propagation is unchanging and the same over the whole medium; "linearly polarized" means that the direction of displacement too is unchanging and the same over the whole medium; and the magnitude of the displacement is a sinusoidal function only of time ...
In physics, the wavefront of a time-varying wave field is the set of all points having the same phase. [1] The term is generally meaningful only for fields that, at each point, vary sinusoidally in time with a single temporal frequency (otherwise the phase is not well defined). Wavefronts usually move with time.
It is a null solution, and it represents a transverse sinusoidal electromagnetic plane wave with amplitude q and frequency ω, traveling in the e 1 direction. When one computes the stress–energy tensor T ab for the given electromagnetic field, compute the Einstein tensor G ab for the given metric tensor,