Search results
Results from the WOW.Com Content Network
Phytoplankton obtain their energy through photosynthesis, as trees and other plants do on land. This means phytoplankton must have light from the sun, so they live in the well-lit surface layers (euphotic zone) of oceans and lakes. In comparison with terrestrial plants, phytoplankton are distributed over a larger surface area, are exposed to ...
However, most marine primary production comes from organisms which use photosynthesis on the carbon dioxide dissolved in the water. This process uses energy from sunlight to convert water and carbon dioxide [ 4 ] : 186–187 into sugars that can be used both as a source of chemical energy and of organic molecules that are used in the structural ...
Like plants on land, phytoplankton use chlorophyll and other light-harvesting pigments to carry out photosynthesis, absorbing atmospheric carbon dioxide to produce sugars for fuel. Chlorophyll in the water changes the way the water reflects and absorbs sunlight, allowing scientists to map the amount and location of phytoplankton.
In plants, algae, and cyanobacteria, photosynthesis releases oxygen. This oxygenic photosynthesis is by far the most common type of photosynthesis used by living organisms. Some shade-loving plants (sciophytes) produce such low levels of oxygen during photosynthesis that they use all of it themselves instead of releasing it to the atmosphere. [12]
Microalgae, capable of performing photosynthesis, are important for life on earth; they produce approximately half of the atmospheric oxygen [2] and use the greenhouse gas carbon dioxide to grow photoautotrophically. "Marine photosynthesis is dominated by microalgae, which together with cyanobacteria, are collectively called phytoplankton."
The photic zone (or euphotic zone, epipelagic zone, or sunlight zone) is the uppermost layer of a body of water that receives sunlight, allowing phytoplankton to perform photosynthesis. It undergoes a series of physical, chemical, and biological processes that supply nutrients into the upper water column .
It is the part of the broader oceanic carbon cycle responsible for the cycling of organic matter formed mainly by phytoplankton during photosynthesis (soft-tissue pump), as well as the cycling of calcium carbonate (CaCO 3) formed into shells by certain organisms such as plankton and mollusks (carbonate pump).
Phytoplankton absorb energy from the Sun and nutrients from the water to produce their own nourishment or energy. In the process of photosynthesis, phytoplankton release molecular oxygen (O 2) into the water as a waste byproduct. It is estimated that about 50% of the world's oxygen is produced via phytoplankton photosynthesis. [61]