Search results
Results from the WOW.Com Content Network
An example that illustrates the problem is shown in Baes & Mesmer, p. 119. [1] A trimeric species must be formed from a chemical reaction of a dimer with a monomer, with the implication that the value of the stability constant of the dimer must be "known", having been determined using separate experimental data.
Metathesis reactions are another term for double-displacement; that is, when a cation displaces to form an ionic bond with the other anion. The cation bonded with the latter anion will dissociate and bond with the other anion. [1] A common metathesis reaction in aqueous solutions is a precipitation reaction.
A metal ion in aqueous solution or aqua ion is a cation, dissolved in water, of chemical formula [M(H 2 O) n] z+.The solvation number, n, determined by a variety of experimental methods is 4 for Li + and Be 2+ and 6 for most elements in periods 3 and 4 of the periodic table.
Acetic acid (CH 3 COOH) and ammonium (NH + 4) are good examples. Acetic acid is extremely soluble in water, but most of the compound dissolves into molecules, rendering it a weak electrolyte. Weak bases and weak acids are generally weak electrolytes. In an aqueous solution there will be some CH 3 COOH and some CH 3 COO − and H +.
A reaction between aqueous solutions of an acid and a base is called neutralization, producing a solution of water and a salt in which the salt separates into its component ions. If the aqueous solution is saturated with a given salt solute , any additional such salt precipitates out of the solution.
In an aqueous solution, precipitation is the "sedimentation of a solid material (a precipitate) from a liquid solution". [1] [2] The solid formed is called the precipitate. [3] In case of an inorganic chemical reaction leading to precipitation, the chemical reagent causing the solid to form is called the precipitant. [4]
A spectator ion is an ion that exists both as a reactant and a product in a chemical equation of an aqueous solution. [1] For example, in the reaction of aqueous solutions of sodium carbonate and copper(II) sulfate: 2 Na + + CO 2− 3 (aq) + Cu 2+ (aq) + SO 2− 4 (aq) → 2 Na + (aq) + SO 2− 4 (aq) + CuCO 3
Solvation does not cause a chemical reaction or chemical configuration changes in the solute. However, solvation resembles a coordination complex formation reaction, often with considerable energetics (heat of solvation and entropy of solvation) and is thus far from a neutral process. When one substance dissolves into another, a solution is formed.