Search results
Results from the WOW.Com Content Network
Ca(OH) 2 or CaO · H 2 O: Calcium hydroxide (portlandite) C-S-H: 0.6–2.0 CaO · SiO 2 · 0.9–2.5 H 2 O, with variable composition within this range, and often also incorporating partial substitution of Al for Si: Calcium silicate hydrate: C-A-H: Phase more complex than C-S-H: Calcium aluminate hydrate C-A-S-H: This is even more complex than ...
Calcium hydroxide is moderately soluble in water, as seen for many dihydroxides. Its solubility increases from 0.66 g/L at 100 °C to 1.89 g/L at 0 °C. [8] Its solubility product K sp of 5.02 × 10 −6 at 25 °C, [1] its dissociation in water is large enough that its solutions are basic according to the following dissolution reaction:
CaO + H 2 O → Ca(OH) 2 Ca(OH) 2 + CO 2 → CaCO 3 + H 2 O. In a laboratory, calcium carbonate can easily be crystallized from calcium chloride (CaCl 2), by placing an aqueous solution of CaCl 2 in a desiccator alongside ammonium carbonate [NH 4] 2 CO 3. [10] In the desiccator, ammonium carbonate is exposed to air and decomposes into ammonia ...
Carbonatation is a slow process that occurs in concrete where lime (CaO, or Ca(OH) 2 ) in the cement reacts with carbon dioxide (CO 2) from the air and forms calcium carbonate. The water in the pores of Portland cement concrete is normally alkaline with a pH in the range of 12.5 to 13.5.
added by the dissolution of Ca(OH) 2: [7] Mg 2+ + Ca(OH) 2 → Mg(OH) 2 + Ca 2+ For seawater brines, precipitating agents other than Ca(OH) 2 can be utilized, each with their own nuances: Use of Ca(OH) 2 can yield CaSO 4 or CaCO 3, which reduces the final purity of Mg(OH) 2. NH 4 OH, can produce explosive nitrogen trichloride when the brine is ...
Its usage varies from about 30 to 50 kilograms (65–110 lb) per ton of steel. The quicklime neutralizes the acidic oxides, SiO 2, Al 2 O 3, and Fe 2 O 3, to produce a basic molten slag. [10] Ground quicklime is used in the production of aerated concrete such as blocks with densities of ca. 0.6–1.0 g/cm 3 (9.8–16.4 g/cu in). [10]
An aqueous solution containing 120 mg NaHCO 3 (baking soda) per litre of water will contain 1.4285 mmol/l of bicarbonate, since the molar mass of baking soda is 84.007 g/mol. This is equivalent in carbonate hardness to a solution containing 0.71423 mmol/L of (calcium) carbonate, or 71.485 mg/L of calcium carbonate (molar mass 100.09 g/mol).
Calcium bicarbonate, also called calcium hydrogencarbonate, has the chemical formula Ca(HCO 3) 2. The term does not refer to a known solid compound; it exists only in aqueous solution containing calcium (Ca 2+), bicarbonate (HCO − 3), and carbonate (CO 2− 3) ions, together with dissolved carbon dioxide (CO 2).