Search results
Results from the WOW.Com Content Network
White dwarfs with hydrogen-poor atmospheres, such as WD J2147–4035, are less affected by CIA and therefore have a yellow to orange color. [80] [77] The white dwarf cooling sequence seen by ESA's Gaia mission. White dwarf core material is a completely ionized plasma – a mixture of nuclei and electrons – that is
This includes both red dwarfs and brown dwarfs that are very faint in the visible spectrum. [ 95 ] Brown dwarfs , stars that do not undergo hydrogen fusion , cool as they age and so progress to later spectral types.
At a distance of about 25 parsecs (80 ly) from Earth, it is the outer component of a visual triple star system consisting of an inner pair of red dwarf stars, named G 229-20. The white dwarf displays a featureless absorption spectrum, lacking strong optical absorption or emission features in its atmosphere.
The term red-giant branch came into use during the 1940s and 1950s, although initially just as a general term to refer to the red-giant region of the Hertzsprung–Russell diagram. Although the basis of a thermonuclear main-sequence lifetime, followed by a thermodynamic contraction phase to a white dwarf was understood by 1940, the internal ...
The supposed planetesimal, WD 1145+017 b, [13] with a 4.5 hour orbit, is being ripped apart by the star and is a remnant of the former planetary system that the star hosted before becoming a white dwarf. [8] [9] It is the first observation of a planetary object being shredded by a white dwarf. Several other large pieces have been seen in orbit ...
They usually contain a white dwarf with a companion red giant. The cool giant star loses material via Roche lobe overflow or through its stellar wind, which flows onto the hot compact star, usually via an accretion disk. Symbiotic binaries are of particular interest to astronomers as they can be used to learn about stellar evolution.
It has a mass of 84 to 87 M J, making VVV 1256−62B likely a red dwarf star. [14] The subdwarf Wolf 1130C (sdT8) is the companion of an old subdwarf-white dwarf binary, which is estimated to be older than 10 billion years. It has a mass of 44.9 M J, making it a brown dwarf.
Indeed, this star is the prototype (archetype in practice) for DZ white dwarfs. Physical models of white dwarfs used by today's astrophysicists show that elements with mass greater than helium would sink, all things being equal, below the photosphere, leaving hydrogen and helium to be visible in the spectrum; for heavier elements to appear here ...