Search results
Results from the WOW.Com Content Network
A person flying at 9,100 m (30,000 ft) above sea level over mountains will feel more gravity than someone at the same elevation but over the sea. However, a person standing on the Earth's surface feels less gravity when the elevation is higher. The following formula approximates the Earth's gravity variation with altitude:
A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.
At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.
It is a generalisation of the vector form, which becomes particularly useful if more than two objects are involved (such as a rocket between the Earth and the Moon). For two objects (e.g. object 2 is a rocket, object 1 the Earth), we simply write r instead of r 12 and m instead of m 2 and define the gravitational field g(r) as:
For two bodies, the parameter may be expressed as G(m 1 + m 2), or as GM when one body is much larger than the other: = (+). For several objects in the Solar System, the value of μ is known to greater accuracy than either G or M. The SI unit of the standard gravitational parameter is m 3 ⋅s −2.
Its geometric parameters are: semi-major axis a = 6378137.0 m, and flattening f = 1/298.257222101. If we also require that the enclosed mass M is equal to the known mass of the Earth (including atmosphere), as involved in the standard gravitational parameter, GM = 3986005 × 10 8 m 3 ·s −2, we obtain for the potential at the reference ellipsoid:
Geopotential height differs from geometric height (as given by a tape measure) because Earth's gravity is not constant, varying markedly with altitude and latitude; thus, a 1-m geopotential height difference implies a different vertical distance in physical space: "the unit-mass must be lifted higher at the equator than at the pole, if the same ...
The force of gravity is weakest at the equator because of the centrifugal force caused by the Earth's rotation and because points on the equator are furthest from the center of the Earth. The force of gravity varies with latitude and increases from about 9.780 m/s 2 at the Equator to about 9.832 m/s 2 at the poles. [80] [81]