Ad
related to: examples of curve fitting
Search results
Results from the WOW.Com Content Network
Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints. [ 4 ] [ 5 ] Curve fitting can involve either interpolation , [ 6 ] [ 7 ] where an exact fit to the data is required, or smoothing , [ 8 ] [ 9 ] in which a "smooth ...
The best-fit curve is often assumed to be that which minimizes the sum of squared residuals. This is the ordinary least squares (OLS) approach. However, in cases where the dependent variable does not have constant variance, or there are some outliers, a sum of weighted squared residuals may be minimized; see weighted least squares.
For example, when fitting data to a Lorentzian curve (,) = + where is the height, is the position and is the half-width at half height, there are two solutions for the half-width, ^ and ^ which give the same optimal value for the objective function.
Pages in category "Curve fitting" The following 16 pages are in this category, out of 16 total. This list may not reflect recent changes. ...
Local regression or local polynomial regression, [1] also known as moving regression, [2] is a generalization of the moving average and polynomial regression. [3] Its most common methods, initially developed for scatterplot smoothing, are LOESS (locally estimated scatterplot smoothing) and LOWESS (locally weighted scatterplot smoothing), both pronounced / ˈ l oʊ ɛ s / LOH-ess.
For example, x and x 2 have correlation around 0.97 when x is uniformly distributed on the interval (0, 1). Although the correlation can be reduced by using orthogonal polynomials , it is generally more informative to consider the fitted regression function as a whole.
In this example we try to fit the function = + using the Levenberg–Marquardt algorithm implemented in GNU Octave as the leasqr function. The graphs show progressively better fitting for the parameters a = 100 {\displaystyle a=100} , b = 102 {\displaystyle b=102} used in the initial curve.
For fitting rational function models, the constant term in the denominator is usually set to 1. Rational functions are typically identified by the degrees of the numerator and denominator. For example, a quadratic for the numerator and a cubic for the denominator is identified as a quadratic/cubic rational function.
Ad
related to: examples of curve fitting