Search results
Results from the WOW.Com Content Network
The term "k-means" was first used by James MacQueen in 1967, [2] though the idea goes back to Hugo Steinhaus in 1956. [3]The standard algorithm was first proposed by Stuart Lloyd of Bell Labs in 1957 as a technique for pulse-code modulation, although it was not published as a journal article until 1982. [4]
The strategy of the algorithm is to generate a distortion curve for the input data by running a standard clustering algorithm such as k-means for all values of k between 1 and n, and computing the distortion (described below) of the resulting clustering.
In data mining, k-means++ [1] [2] is an algorithm for choosing the initial values (or "seeds") for the k-means clustering algorithm. It was proposed in 2007 by David Arthur and Sergei Vassilvitskii, as an approximation algorithm for the NP-hard k-means problem—a way of avoiding the sometimes poor clusterings found by the standard k-means algorithm.
Centroid model s: for example, the k-means algorithm represents each cluster by a single mean vector. Distribution model s : clusters are modeled using statistical distributions, such as multivariate normal distributions used by the expectation-maximization algorithm .
Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.. Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible.
This image is part of an example of the K-means algorithm. This is the first step, where the points and centroids are randomly placed. ... line explanation of what ...
In contrast to the k-means algorithm, k-medoids chooses actual data points as centers (medoids or exemplars), and thereby allows for greater interpretability of the cluster centers than in k-means, where the center of a cluster is not necessarily one of the input data points (it is the average between the points in the cluster).
This image is part of a series of images showing an example of the operation of the k-means algorithm. This is the third step where the centroids are moved to the average of all the data points. Date: 26 July 2007: Source: Own work: Author: Weston.pace