enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    To determine an appropriate sample size n for estimating proportions, the equation below can be solved, where W represents the desired width of the confidence interval. The resulting sample size formula, is often applied with a conservative estimate of p (e.g., 0.5):

  3. Confidence interval - Wikipedia

    en.wikipedia.org/wiki/Confidence_interval

    The colored lines are 50% confidence intervals for the mean, μ. At the center of each interval is the sample mean, marked with a diamond. The blue intervals contain the population mean, and the red ones do not. In statistics, a confidence interval (CI) is a tool for estimating a parameter, such as the mean of a population. [1]

  4. Margin of error - Wikipedia

    en.wikipedia.org/wiki/Margin_of_error

    This interval is called the confidence interval, and the radius (half the interval) is called the margin of error, corresponding to a 95% confidence level. Generally, at a confidence level , a sample sized of a population having expected standard deviation has a margin of error

  5. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    When working with small sample sizes (i.e., less than 50), the basic / reversed percentile and percentile confidence intervals for (for example) the variance statistic will be too narrow. So that with a sample of 20 points, 90% confidence interval will include the true variance only 78% of the time. [44]

  6. Standard error - Wikipedia

    en.wikipedia.org/wiki/Standard_error

    when the probability distribution is unknown, Chebyshev's or the Vysochanskiï–Petunin inequalities can be used to calculate a conservative confidence interval; and; as the sample size tends to infinity the central limit theorem guarantees that the sampling distribution of the mean is asymptotically normal.

  7. Rule of three (statistics) - Wikipedia

    en.wikipedia.org/wiki/Rule_of_three_(statistics)

    Comparison of the rule of three to the exact binomial one-sided confidence interval with no positive samples. In statistical analysis, the rule of three states that if a certain event did not occur in a sample with n subjects, the interval from 0 to 3/ n is a 95% confidence interval for the rate of occurrences in the population.

  8. Binomial proportion confidence interval - Wikipedia

    en.wikipedia.org/wiki/Binomial_proportion...

    In contrast, it is worth noting that other confidence interval may have coverage levels that are lower than the nominal , i.e., the normal approximation (or "standard") interval, Wilson interval, [8] Agresti–Coull interval, [13] etc., with a nominal coverage of 95% may in fact cover less than 95%, [4] even for large sample sizes.

  9. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    This is related to confidence interval as used in statistics: ... is the average of a sample of size . Normality tests. The "68–95–99.7 rule" is often used to ...