Search results
Results from the WOW.Com Content Network
In chemistry, the oxygen reduction reaction refers to the reduction half reaction whereby O 2 is reduced to water or hydrogen peroxide. In fuel cells, the reduction to water is preferred because the current is higher. The oxygen reduction reaction is well demonstrated and highly efficient in nature. [1] [2]
A half reaction is obtained by considering the change in oxidation states of individual substances involved in the redox reaction. Often, the concept of half reactions is used to describe what occurs in an electrochemical cell, such as a Galvanic cell battery. Half reactions can be written to describe both the metal undergoing oxidation (known ...
In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...
The values below are standard apparent reduction potentials (E°') for electro-biochemical half-reactions measured at 25 °C, 1 atmosphere and a pH of 7 in aqueous solution. [1] [2] The actual physiological potential depends on the ratio of the reduced (Red) and oxidized (Ox) forms according to the Nernst equation and the thermal voltage.
Electrode potentials of successive elementary half-reactions cannot be directly added. However, the corresponding Gibbs free energy changes (∆G°) must satisfy ∆G° = – z FE°, where z electrons are transferred, and the Faraday constant F is the conversion factor describing Coulombs transferred per mole electrons. Those Gibbs free energy ...
In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...
At the positively charged anode, an oxidation reaction occurs, generating oxygen gas and giving electrons to the anode to complete the circuit. The two half-reactions, reduction and oxidation, are coupled to form a balanced system. In order to balance each half-reaction, the water needs to be acidic or basic.
Oxidation half reaction: Fe 0 → Fe 3+ + 3e −; Reduction half reaction: O 2 + 4e − → 2 O 2−; Iron (Fe) has been oxidized because the oxidation number increased. Iron is the reducing agent because it gave electrons to the oxygen (O 2). Oxygen (O 2) has been reduced because the oxidation number has decreased and is the oxidizing agent ...