Search results
Results from the WOW.Com Content Network
CatBoost [6] is an open-source software library developed by Yandex. It provides a gradient boosting framework which, among other features, attempts to solve for categorical features using a permutation-driven alternative to the classical algorithm. [ 7 ]
Exclusive feature bundling (EFB) is a near-lossless method to reduce the number of effective features. In a sparse feature space many features are nearly exclusive, implying they rarely take nonzero values simultaneously. One-hot encoded features are a perfect example of exclusive features.
[22] [23] For example, following the path that a decision tree takes to make its decision is trivial and self-explained, but following the paths of hundreds or thousands of trees is much harder. To achieve both performance and interpretability, some model compression techniques allow transforming an XGBoost into a single "born-again" decision ...
Soon after, the Python and R packages were built, and XGBoost now has package implementations for Java, Scala, Julia, Perl, and other languages. This brought the library to more developers and contributed to its popularity among the Kaggle community, where it has been used for a large number of competitions.
There, () is the value of the loss function at -th example, and () is the empirical risk. When used to minimize the above function, a standard (or "batch") gradient descent method would perform the following iterations: w := w − η ∇ Q ( w ) = w − η n ∑ i = 1 n ∇ Q i ( w ) . {\displaystyle w:=w-\eta \,\nabla Q(w)=w-{\frac {\eta }{n ...
Feature engineering in machine learning and statistical modeling involves selecting, creating, transforming, and extracting data features. Key components include feature creation from existing data, transforming and imputing missing or invalid features, reducing data dimensionality through methods like Principal Components Analysis (PCA), Independent Component Analysis (ICA), and Linear ...
In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).
The core idea behind random projection is given in the Johnson-Lindenstrauss lemma, [2] which states that if points in a vector space are of sufficiently high dimension, then they may be projected into a suitable lower-dimensional space in a way which approximately preserves pairwise distances between the points with high probability.