enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. CatBoost - Wikipedia

    en.wikipedia.org/wiki/Catboost

    CatBoost [6] is an open-source software library developed by Yandex. It provides a gradient boosting framework which, among other features, attempts to solve for categorical features using a permutation-driven alternative to the classical algorithm. [ 7 ]

  3. LightGBM - Wikipedia

    en.wikipedia.org/wiki/LightGBM

    Exclusive feature bundling (EFB) is a near-lossless method to reduce the number of effective features. In a sparse feature space many features are nearly exclusive, implying they rarely take nonzero values simultaneously. One-hot encoded features are a perfect example of exclusive features.

  4. Gradient boosting - Wikipedia

    en.wikipedia.org/wiki/Gradient_boosting

    [22] [23] For example, following the path that a decision tree takes to make its decision is trivial and self-explained, but following the paths of hundreds or thousands of trees is much harder. To achieve both performance and interpretability, some model compression techniques allow transforming an XGBoost into a single "born-again" decision ...

  5. XGBoost - Wikipedia

    en.wikipedia.org/wiki/XGBoost

    Soon after, the Python and R packages were built, and XGBoost now has package implementations for Java, Scala, Julia, Perl, and other languages. This brought the library to more developers and contributed to its popularity among the Kaggle community, where it has been used for a large number of competitions.

  6. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    There, () is the value of the loss function at -th example, and () is the empirical risk. When used to minimize the above function, a standard (or "batch") gradient descent method would perform the following iterations: w := w − η ∇ Q ( w ) = w − η n ∑ i = 1 n ∇ Q i ( w ) . {\displaystyle w:=w-\eta \,\nabla Q(w)=w-{\frac {\eta }{n ...

  7. Feature engineering - Wikipedia

    en.wikipedia.org/wiki/Feature_engineering

    Feature engineering in machine learning and statistical modeling involves selecting, creating, transforming, and extracting data features. Key components include feature creation from existing data, transforming and imputing missing or invalid features, reducing data dimensionality through methods like Principal Components Analysis (PCA), Independent Component Analysis (ICA), and Linear ...

  8. Hyperparameter (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_(machine...

    In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).

  9. Random projection - Wikipedia

    en.wikipedia.org/wiki/Random_projection

    The core idea behind random projection is given in the Johnson-Lindenstrauss lemma, [2] which states that if points in a vector space are of sufficiently high dimension, then they may be projected into a suitable lower-dimensional space in a way which approximately preserves pairwise distances between the points with high probability.