Search results
Results from the WOW.Com Content Network
The quadrant count ratio (QCR) is a measure of the association between two quantitative variables. The QCR is not commonly used in the practice of statistics ; rather, it is a useful tool in statistics education because it can be used as an intermediate step in the development of Pearson's correlation coefficient .
The ratio estimator is a statistical estimator for the ratio of means of two random variables. Ratio estimates are biased and corrections must be made when they are used in experimental or survey work. The ratio estimates are asymmetrical and symmetrical tests such as the t test should not be used to generate confidence intervals.
The bold numbers (36, 39) are used to calculate the median as their average. As there are an even number of data points, the first three methods all give the same results. (The Method 3 is executed such that the median is not chosen as a new data point and the Method 1 started.)
The binomial ratio distribution is of significance in clinical trials: if the distribution of T is known as above, the probability of a given ratio arising purely by chance can be estimated, i.e. a false positive trial. A number of papers compare the robustness of different approximations for the binomial ratio. [citation needed]
The ratio of width to height of standard-definition television. In mathematics, a ratio (/ ˈ r eɪ ʃ (i) oʊ /) shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ratio 4:3).
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
While you learned in school that a ratio is a comparison "in quantity, amount, or size" between at least two things — such as writing 1:5 to explain that for every one match you get on a dating ...
In statistics, the Q-function is the tail distribution function of the standard normal distribution. [ 1 ] [ 2 ] In other words, Q ( x ) {\displaystyle Q(x)} is the probability that a normal (Gaussian) random variable will obtain a value larger than x {\displaystyle x} standard deviations.