enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    This quantity 2 hour −1 is called the probability density for dying at around 5 hours. Therefore, the probability that the bacterium dies at 5 hours can be written as (2 hour −1) dt. This is the probability that the bacterium dies within an infinitesimal window of time around 5 hours, where dt is the duration of this

  3. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The Rademacher distribution, which takes value 1 with probability 1/2 and value −1 with probability 1/2. The binomial distribution, which describes the number of successes in a series of independent Yes/No experiments all with the same probability of success.

  4. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability q = 1 − p).

  5. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The probability density must be scaled by / so that the integral is still 1. If Z {\textstyle Z} is a standard normal deviate , then X = σ Z + μ {\textstyle X=\sigma Z+\mu } will have a normal distribution with expected value μ {\textstyle \mu } and standard deviation σ {\textstyle \sigma } .

  6. Law of the unconscious statistician - Wikipedia

    en.wikipedia.org/wiki/Law_of_the_unconscious...

    If g is a general function, then the probability that g(X) is valued in a set of real numbers K equals the probability that X is valued in g −1 (K), which is given by (). Under various conditions on g , the change-of-variables formula for integration can be applied to relate this to an integral over K , and hence to identify the density of g ...

  7. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    As an example one may consider random variables with densities f n (x) = (1 + cos(2πnx))1 (0,1). These random variables converge in distribution to a uniform U(0, 1), whereas their densities do not converge at all. [3] However, according to Scheffé’s theorem, convergence of the probability density functions implies convergence in ...

  8. Dirichlet distribution - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_distribution

    Illustrating how the log of the density function changes when K = 3 as we change the vector α from α = (0.3, 0.3, 0.3) to (2.0, 2.0, 2.0), keeping all the individual 's equal to each other. The Dirichlet distribution of order K ≥ 2 with parameters α 1 , ..., α K > 0 has a probability density function with respect to Lebesgue measure on ...

  9. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.