Search results
Results from the WOW.Com Content Network
The standard playing card ranks {A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2} form a 13-element set. The card suits {♠, ♥, ♦, ♣} form a four-element set. The Cartesian product of these sets returns a 52-element set consisting of 52 ordered pairs, which correspond to all 52 possible playing cards.
In set theory, a Cartesian product is a mathematical operation which returns a set (or product set) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) —where a ∈ A and b ∈ B. [5] The class of all things (of a given type) that have Cartesian products is called a Cartesian ...
The lexicographic combination of two total orders is a linear extension of their product order, and thus the product order is a subrelation of the lexicographic order. [3] The Cartesian product with the product order is the categorical product in the category of partially ordered sets with monotone functions. [7]
In mathematics, a finitary relation over a sequence of sets X 1, ..., X n is a subset of the Cartesian product X 1 × ... × X n; that is, it is a set of n-tuples (x 1, ..., x n), each being a sequence of elements x i in the corresponding X i. [1] [2] [3] Typically, the relation describes a possible connection between the elements of an n-tuple ...
In essence, the suspension can be seen as the cartesian product of with the unit interval, modulo an equivalence relation to turn the interval into a loop. The curried form then maps the space X {\displaystyle X} to the space of functions from loops into Z {\displaystyle Z} , that is, from X {\displaystyle X} into Ω Z {\displaystyle \Omega Z ...
For two elements a 1 + b 1 i + c 1 j + d 1 k and a 2 + b 2 i + c 2 j + d 2 k, their product, called the Hamilton product (a 1 + b 1 i + c 1 j + d 1 k) (a 2 + b 2 i + c 2 j + d 2 k), is determined by the products of the basis elements and the distributive law. The distributive law makes it possible to expand the product so that it is a sum of ...
If X is a topological space, then the open sets in X form the objects of a category O(X) for which there is a unique morphism from U to V if U is a subset of V and no morphism otherwise. This poset is a Cartesian closed category: the "product" of U and V is the intersection of U and V and the exponential U V is the interior of U∪(X\V).
In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces.