Search results
Results from the WOW.Com Content Network
Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.
The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck, [1] Haupt et al. [2] and from Rody Oldenhuis software. [3] Given the number of problems (55 in total), just a few are presented here. The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and ...
Design optimization applies the methods of mathematical optimization to design problem formulations and it is sometimes used interchangeably with the term engineering optimization. When the objective function f is a vector rather than a scalar, the problem becomes a multi-objective optimization one. If the design optimization problem has more ...
1. Some methods cannot handle optimization problems with more than a few variables; the results are usually not so accurate. However, there are numerous practical cases where derivative-free methods have been successful in non-trivial simulation optimization problems that include randomness manifesting as "noise" in the objective function.
In general, multi-objective optimization deals with optimization problems with two or more objective functions to be optimized simultaneously. Lexmaxmin optimization presumes that the decision-maker would like the smallest objective value to be as high as possible; subject to this, the second-smallest objective should be as high as possible ...
The optimization of portfolios is an example of multi-objective optimization in economics. Since the 1970s, economists have modeled dynamic decisions over time using control theory . [ 14 ] For example, dynamic search models are used to study labor-market behavior . [ 15 ]
This term is misleading because a single efficient point can be already obtained by solving one linear program, such as the linear program with the same feasible set and the objective function being the sum of the objectives of MOLP. [4] More recent references consider outcome set based solution concepts [5] and corresponding algorithms.
f : ℝ n → ℝ is the objective function to be minimized over the n-variable vector x, g i (x) ≤ 0 are called inequality constraints; h j (x) = 0 are called equality constraints, and; m ≥ 0 and p ≥ 0. If m = p = 0, the problem is an unconstrained optimization problem. By convention, the standard form defines a minimization problem.