Search results
Results from the WOW.Com Content Network
The Gauss map can always be defined locally (i.e. on a small piece of the surface). The Jacobian determinant of the Gauss map is equal to Gaussian curvature, and the differential of the Gauss map is called the shape operator. Gauss first wrote a draft on the topic in 1825 and published in 1827. [1] [citation needed]
By a direct calculation with the matrix defining the shape operator, it can be checked that the Gaussian curvature is the determinant of the shape operator, the mean curvature is half of the trace of the shape operator, and the principal curvatures are the eigenvalues of the shape operator; moreover the Gaussian curvature is the product of the ...
In the fields of computer vision and image analysis, the Harris affine region detector belongs to the category of feature detection.Feature detection is a preprocessing step of several algorithms that rely on identifying characteristic points or interest points so to make correspondences between images, recognize textures, categorize objects or build panoramas.
At a point p on a regular surface in R 3, the Gaussian curvature is also given by = (), where S is the shape operator. A useful formula for the Gaussian curvature is Liouville's equation in terms of the Laplacian in isothermal coordinates.
Via the first fundamental form, it can also be viewed as a (1,1)-tensor field on S, where it is known as the shape operator. The Gaussian curvature or Gauss–Kronecker curvature of f, denoted by K, can then be defined as the point-by-point determinant of the shape operator, or equivalently (relative to local coordinates) as the determinant of ...
The product k 1 k 2 of the two principal curvatures is the Gaussian curvature, K, and the average (k 1 + k 2)/2 is the mean curvature, H. If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every ...
The second fundamental form of a parametric surface S in R 3 was introduced and studied by Gauss.First suppose that the surface is the graph of a twice continuously differentiable function, z = f(x,y), and that the plane z = 0 is tangent to the surface at the origin.
The asymmetric generalized normal distribution is a family of continuous probability distributions in which the shape parameter can be used to introduce asymmetry or skewness. [15] [16] When the shape parameter is zero, the normal distribution results. Positive values of the shape parameter yield left-skewed distributions bounded to the right ...