enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heuristic (computer science) - Wikipedia

    en.wikipedia.org/wiki/Heuristic_(computer_science)

    A heuristic function, also simply called a heuristic, is a function that ranks alternatives in search algorithms at each branching step based on available information to decide which branch to follow. For example, it may approximate the exact solution.

  3. Heuristic - Wikipedia

    en.wikipedia.org/wiki/Heuristic

    Gigerenzer & Gaissmaier (2011) state that sub-sets of strategy include heuristics, regression analysis, and Bayesian inference. [14]A heuristic is a strategy that ignores part of the information, with the goal of making decisions more quickly, frugally, and/or accurately than more complex methods (Gigerenzer and Gaissmaier [2011], p. 454; see also Todd et al. [2012], p. 7).

  4. Admissible heuristic - Wikipedia

    en.wikipedia.org/wiki/Admissible_heuristic

    The search algorithm uses the admissible heuristic to find an estimated optimal path to the goal state from the current node. For example, in A* search the evaluation function (where is the current node) is: = + where = the evaluation function.

  5. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    If h a (n) is an admissible heuristic function, in the weighted version of the A* search one uses h w (n) = ε h a (n), ε > 1 as the heuristic function, and perform the A* search as usual (which eventually happens faster than using h a since fewer nodes are expanded).

  6. Consistent heuristic - Wikipedia

    en.wikipedia.org/wiki/Consistent_heuristic

    Comparison of an admissible but inconsistent and a consistent heuristic evaluation function. Consistent heuristics are called monotone because the estimated final cost of a partial solution, () = + is monotonically non-decreasing along any path, where () = = (,) is the cost of the best path from start node to .

  7. Anytime A* - Wikipedia

    en.wikipedia.org/wiki/Anytime_A*

    A* search algorithm can be presented by the function of f(n) = g(n) + h(n), where n is the last node on the path, g(n) is the cost of the path from the start node to n, and h(n) is a heuristic that estimates the cost of the cheapest path from n to the goal. Different than the A* algorithm, the most important function of Anytime A* algorithm is ...

  8. Best-first search - Wikipedia

    en.wikipedia.org/wiki/Best-first_search

    Best-first search is a class of search algorithms which explores a graph by expanding the most promising node chosen according to a specified rule.. Judea Pearl described best-first search as estimating the promise of node n by a "heuristic evaluation function () which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to ...

  9. Heuristic (psychology) - Wikipedia

    en.wikipedia.org/wiki/Heuristic_(psychology)

    Base rate heuristic: When a decision involves probability this is a mental shortcut that uses relevant data to determine the probability of an outcome occurring. When using this Heuristic there is a common issue where individuals misjudge the likelihood of a situation.