Search results
Results from the WOW.Com Content Network
In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid.TDH is the total amount of system pressure, measured in feet, where water can flow through a system before gravity takes over, and is essential for pump specification.
If an NPSH A is say 10 bar then the pump you are using will deliver exactly 10 bar more over the entire operational curve of a pump than its listed operational curve. Example: A pump with a max. pressure head of 8 bar (80 metres) will actually run at 18 bar if the NPSH A is 10 bar. i.e.: 8 bar (pump curve) plus 10 bar NPSH A = 18 bar.
Pump characteristic curve; the shut-off heads are highlighted From the curve, it is observed that even when the differential head drops off, the output obtained increases because the product of flow rate and head increases (recall that the net pump output is given by P o = ρ g H Q {\displaystyle P_{o}=\rho gHQ} and the efficiency is η = ρ g ...
This can be used to calculate mean values (expectations) of the flow rates, head losses or any other variables of interest in the pipe network. This analysis has been extended using a reduced-parameter entropic formulation, which ensures consistency of the analysis regardless of the graphical representation of the network. [3]
The affinity laws (also known as the "Fan Laws" or "Pump Laws") for pumps/fans are used in hydraulics, hydronics and/or HVAC to express the relationship between variables involved in pump or fan performance (such as head, volumetric flow rate, shaft speed) and power. They apply to pumps, fans, and hydraulic turbines. In these rotary implements ...
CITHP – closed-in tubing head pressure (tubing head pressure when the well is shut in) CIV – chemical injection valve; CK – choke (a restriction in a flowline or a system, usually referring to a production choke during a test or the choke in the well control system) CL – core log; CLG – core log and graph; CM – choke module
With the help of these equations the head developed by a pump and the head utilised by a turbine can be easily determined. As the name suggests these equations were formulated by Leonhard Euler in the eighteenth century. [1] These equations can be derived from the moment of momentum equation when applied for a pump or a turbine.
The hydraulic calculation procedure is defined in the applicable reference model codes such as that published by the US-based National Fire Protection Association (NFPA), [2] or the EN 12845 standard, Fixed firefighting system – Automatic sprinkler systems – Design, installation and maintenance.