enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Genus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Genus_(mathematics)

    The non-orientable genus, demigenus, or Euler genus of a connected, non-orientable closed surface is a positive integer representing the number of cross-caps attached to a sphere. Alternatively, it can be defined for a closed surface in terms of the Euler characteristic χ, via the relationship χ = 2 − k, where k is the non-orientable genus.

  3. Jacobian variety - Wikipedia

    en.wikipedia.org/wiki/Jacobian_variety

    The Jacobian of a curve over an arbitrary field was constructed by Weil (1948) as part of his proof of the Riemann hypothesis for curves over a finite field. The Abel–Jacobi theorem states that the torus thus built is a variety, the classical Jacobian of a curve, that indeed parametrizes the degree 0 line bundles, that is, it can be ...

  4. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent.

  5. Riemann–Hurwitz formula - Wikipedia

    en.wikipedia.org/wiki/Riemann–Hurwitz_formula

    The Weierstrass ℘-function, considered as a meromorphic function with values in the Riemann sphere, yields a map from an elliptic curve (genus 1) to the projective line (genus 0). It is a double cover (N = 2), with ramification at four points only, at which e = 2. The Riemann–Hurwitz formula then reads

  6. Genus g surface - Wikipedia

    en.wikipedia.org/wiki/Genus_g_surface

    The genus (sometimes called the demigenus or Euler genus) of a connected non-orientable closed surface is a positive integer representing the number of cross-caps attached to a sphere. Alternatively, it can be defined for a closed surface in terms of the Euler characteristic χ, via the relationship χ = 2 − g, where g is the non-orientable ...

  7. Klein bottle - Wikipedia

    en.wikipedia.org/wiki/Klein_bottle

    A two-dimensional representation of the Klein bottle immersed in three-dimensional space. In mathematics, the Klein bottle (/ ˈ k l aɪ n /) is an example of a non-orientable surface; that is, informally, a one-sided surface which, if traveled upon, could be followed back to the point of origin while flipping the traveler upside down.

  8. Nielsen–Thurston classification - Wikipedia

    en.wikipedia.org/wiki/Nielsen–Thurston...

    The case where S is a torus (i.e., a surface whose genus is one) is handled separately (see torus bundle) and was known before Thurston's work. If the genus of S is two or greater, then S is naturally hyperbolic, and the tools of Teichmüller theory become useful. In what follows, we assume S has genus at least two, as this is the case Thurston ...

  9. Genus–degree formula - Wikipedia

    en.wikipedia.org/wiki/Genus–degree_formula

    Since these parameterizing functions are doubly periodic, the elliptic curve can be identified with a period parallelogram with the sides glued together i.e. a torus. So the genus of an elliptic curve is 1. The genus–degree formula is a generalization of this fact to higher genus curves. The basic idea would be to use higher degree equations.