Search results
Results from the WOW.Com Content Network
The concept of a conditional probability with regard to an isolated hypothesis whose probability equals 0 is inadmissible. For we can obtain a probability distribution for [the latitude] on the meridian circle only if we regard this circle as an element of the decomposition of the entire spherical surface onto meridian circles with the given poles
The term measure here refers to the measure-theoretic approach to probability. Violations of unit measure have been reported in arguments about the outcomes of events [2] [3] under which events acquire "probabilities" that are not the probabilities of probability theory. In situations such as these the term "probability" serves as a false ...
In mathematics, a probability measure is a real-valued function defined on a set of events in a σ-algebra that satisfies measure properties such as countable additivity. [1] The difference between a probability measure and the more general notion of measure (which includes concepts like area or volume) is that a probability measure must assign ...
Such a measure is called a probability measure or distribution. See the list of probability distributions for instances. The Dirac measure δ a (cf. Dirac delta function) is given by δ a (S) = χ S (a), where χ S is the indicator function of . The measure of a set is 1 if it contains the point and 0 otherwise.
In measure theory Prokhorov's theorem relates tightness of measures to relative compactness (and hence weak convergence) in the space of probability measures. It is credited to the Soviet mathematician Yuri Vasilyevich Prokhorov, who considered probability measures on complete separable metric spaces. The term "Prokhorov’s theorem" is also ...
In fact, the discrete case (although without the restriction to probability measures) is the first step in proving the general measure-theoretic formulation, as the general version follows therefrom by an application of the monotone convergence theorem. [7] Without any major changes, the result can also be formulated in the setting of outer ...
Note that measures (expectation values of the logarithm) of true probabilities are called "entropy" and generally represented by the letter H, while other measures are often referred to as "information" or "correlation" and generally represented by the letter I. For notational simplicity, the letter I is sometimes used for all measures.
Seen as a function of for given , (= | =) is a probability mass function and so the sum over all (or integral if it is a conditional probability density) is 1. Seen as a function of x {\displaystyle x} for given y {\displaystyle y} , it is a likelihood function , so that the sum (or integral) over all x {\displaystyle x} need not be 1.